
Find the value of \[\int {{e^x}\left[ {\log \cosh x - {{\operatorname{sech} }^2}x} \right]dx} \].
A) \[{e^x}\left( {\log \cosh x - \tanh x} \right) + c\]
B) \[{e^x}\log \cosh x + c\]
C) \[ - {e^x}\tanh x + c\]
D) \[{e^x}\left( {\log \cosh x + \tanh x} \right) + c\]
Answer
587.7k+ views
Hint:
Here, we will first apply integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}\log \cosh x} \right)dx} \] of the above equation, where \[f = \ln \cosh x\] and \[g' = {e^x}\] and apply integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}{{\operatorname{sech} }^2}x} \right)dx} \] of the above equation, where \[f = {e^x}\] and \[g' = {\operatorname{sech} ^2}x\]. Then we subtract them to find the required value.
Complete step by step solution:
We are given that
\[\int {{e^x}\left[ {\log \cosh x - {{\operatorname{sech} }^2}x} \right]dx} \]
Rewriting the above equation, we get
\[ \Rightarrow \int {\left( {{e^x}\log \cosh x - {e^x}{{\operatorname{sech} }^2}x} \right)dx} \]
Applying linearity in the above equation, we get
\[ \Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} \]
Within the above difference, applying integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}\log \cosh x} \right)dx} \] of the above equation, where \[f = \ln \cosh x\] and \[g' = {e^x}\], we get
\[ \Rightarrow \int {{e^x}\ln \cosh xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} {\text{ ......eq.(1)}}\]
Within the above difference, applying integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}{{\operatorname{sech} }^2}x} \right)dx} \] of the above equation, where \[f = {e^x}\] and \[g' = {\operatorname{sech} ^2}x\], we get
\[ \Rightarrow \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\tanh x - \int {{e^x}\tanh xdx} {\text{ ......eq.(2)}}\]
Subtracting the equation (2) from the equation (1), we get
\[
\Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} - \left( {{e^x}\tanh x - \int {{e^x}\tanh xdx} } \right) \\
\Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} - {e^x}\tanh x + \int {{e^x}\tanh xdx} \\
\Rightarrow \int {\left( {{e^x}\log \cosh x - {e^x}{{\operatorname{sech} }^2}x} \right)dx} = {e^x}\ln \cosh x - {e^x}\tanh x + c \\
\]
Hence, option A is correct.
Note:
We need to know that while finding the value of indefinite integral, we have to add the constant in the final answer or else the answer will be incomplete. We have to be really thorough with the integrations and differentiation of the functions. The key point in this question is to use the integration by parts \[\int {fg'} = fg - \int {f'g} \] to solve this problem. Do not forget that many integrals can be evaluated in multiple ways and so more than one technique may be used on it, but this problem can only be solved by parts.
Here, we will first apply integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}\log \cosh x} \right)dx} \] of the above equation, where \[f = \ln \cosh x\] and \[g' = {e^x}\] and apply integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}{{\operatorname{sech} }^2}x} \right)dx} \] of the above equation, where \[f = {e^x}\] and \[g' = {\operatorname{sech} ^2}x\]. Then we subtract them to find the required value.
Complete step by step solution:
We are given that
\[\int {{e^x}\left[ {\log \cosh x - {{\operatorname{sech} }^2}x} \right]dx} \]
Rewriting the above equation, we get
\[ \Rightarrow \int {\left( {{e^x}\log \cosh x - {e^x}{{\operatorname{sech} }^2}x} \right)dx} \]
Applying linearity in the above equation, we get
\[ \Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} \]
Within the above difference, applying integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}\log \cosh x} \right)dx} \] of the above equation, where \[f = \ln \cosh x\] and \[g' = {e^x}\], we get
\[ \Rightarrow \int {{e^x}\ln \cosh xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} {\text{ ......eq.(1)}}\]
Within the above difference, applying integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}{{\operatorname{sech} }^2}x} \right)dx} \] of the above equation, where \[f = {e^x}\] and \[g' = {\operatorname{sech} ^2}x\], we get
\[ \Rightarrow \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\tanh x - \int {{e^x}\tanh xdx} {\text{ ......eq.(2)}}\]
Subtracting the equation (2) from the equation (1), we get
\[
\Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} - \left( {{e^x}\tanh x - \int {{e^x}\tanh xdx} } \right) \\
\Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} - {e^x}\tanh x + \int {{e^x}\tanh xdx} \\
\Rightarrow \int {\left( {{e^x}\log \cosh x - {e^x}{{\operatorname{sech} }^2}x} \right)dx} = {e^x}\ln \cosh x - {e^x}\tanh x + c \\
\]
Hence, option A is correct.
Note:
We need to know that while finding the value of indefinite integral, we have to add the constant in the final answer or else the answer will be incomplete. We have to be really thorough with the integrations and differentiation of the functions. The key point in this question is to use the integration by parts \[\int {fg'} = fg - \int {f'g} \] to solve this problem. Do not forget that many integrals can be evaluated in multiple ways and so more than one technique may be used on it, but this problem can only be solved by parts.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

