
Find the value of \[\int {{e^x}\left[ {\log \cosh x - {{\operatorname{sech} }^2}x} \right]dx} \].
A) \[{e^x}\left( {\log \cosh x - \tanh x} \right) + c\]
B) \[{e^x}\log \cosh x + c\]
C) \[ - {e^x}\tanh x + c\]
D) \[{e^x}\left( {\log \cosh x + \tanh x} \right) + c\]
Answer
508.5k+ views
Hint:
Here, we will first apply integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}\log \cosh x} \right)dx} \] of the above equation, where \[f = \ln \cosh x\] and \[g' = {e^x}\] and apply integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}{{\operatorname{sech} }^2}x} \right)dx} \] of the above equation, where \[f = {e^x}\] and \[g' = {\operatorname{sech} ^2}x\]. Then we subtract them to find the required value.
Complete step by step solution:
We are given that
\[\int {{e^x}\left[ {\log \cosh x - {{\operatorname{sech} }^2}x} \right]dx} \]
Rewriting the above equation, we get
\[ \Rightarrow \int {\left( {{e^x}\log \cosh x - {e^x}{{\operatorname{sech} }^2}x} \right)dx} \]
Applying linearity in the above equation, we get
\[ \Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} \]
Within the above difference, applying integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}\log \cosh x} \right)dx} \] of the above equation, where \[f = \ln \cosh x\] and \[g' = {e^x}\], we get
\[ \Rightarrow \int {{e^x}\ln \cosh xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} {\text{ ......eq.(1)}}\]
Within the above difference, applying integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}{{\operatorname{sech} }^2}x} \right)dx} \] of the above equation, where \[f = {e^x}\] and \[g' = {\operatorname{sech} ^2}x\], we get
\[ \Rightarrow \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\tanh x - \int {{e^x}\tanh xdx} {\text{ ......eq.(2)}}\]
Subtracting the equation (2) from the equation (1), we get
\[
\Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} - \left( {{e^x}\tanh x - \int {{e^x}\tanh xdx} } \right) \\
\Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} - {e^x}\tanh x + \int {{e^x}\tanh xdx} \\
\Rightarrow \int {\left( {{e^x}\log \cosh x - {e^x}{{\operatorname{sech} }^2}x} \right)dx} = {e^x}\ln \cosh x - {e^x}\tanh x + c \\
\]
Hence, option A is correct.
Note:
We need to know that while finding the value of indefinite integral, we have to add the constant in the final answer or else the answer will be incomplete. We have to be really thorough with the integrations and differentiation of the functions. The key point in this question is to use the integration by parts \[\int {fg'} = fg - \int {f'g} \] to solve this problem. Do not forget that many integrals can be evaluated in multiple ways and so more than one technique may be used on it, but this problem can only be solved by parts.
Here, we will first apply integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}\log \cosh x} \right)dx} \] of the above equation, where \[f = \ln \cosh x\] and \[g' = {e^x}\] and apply integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}{{\operatorname{sech} }^2}x} \right)dx} \] of the above equation, where \[f = {e^x}\] and \[g' = {\operatorname{sech} ^2}x\]. Then we subtract them to find the required value.
Complete step by step solution:
We are given that
\[\int {{e^x}\left[ {\log \cosh x - {{\operatorname{sech} }^2}x} \right]dx} \]
Rewriting the above equation, we get
\[ \Rightarrow \int {\left( {{e^x}\log \cosh x - {e^x}{{\operatorname{sech} }^2}x} \right)dx} \]
Applying linearity in the above equation, we get
\[ \Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} \]
Within the above difference, applying integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}\log \cosh x} \right)dx} \] of the above equation, where \[f = \ln \cosh x\] and \[g' = {e^x}\], we get
\[ \Rightarrow \int {{e^x}\ln \cosh xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} {\text{ ......eq.(1)}}\]
Within the above difference, applying integration by parts \[\int {fg'} = fg - \int {f'g} \] for \[\int {\left( {{e^x}{{\operatorname{sech} }^2}x} \right)dx} \] of the above equation, where \[f = {e^x}\] and \[g' = {\operatorname{sech} ^2}x\], we get
\[ \Rightarrow \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\tanh x - \int {{e^x}\tanh xdx} {\text{ ......eq.(2)}}\]
Subtracting the equation (2) from the equation (1), we get
\[
\Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} - \left( {{e^x}\tanh x - \int {{e^x}\tanh xdx} } \right) \\
\Rightarrow \int {{e^x}\log \cosh xdx} - \int {{e^x}{{\operatorname{sech} }^2}xdx} = {e^x}\ln \cosh x - \int {{e^x}\tanh xdx} - {e^x}\tanh x + \int {{e^x}\tanh xdx} \\
\Rightarrow \int {\left( {{e^x}\log \cosh x - {e^x}{{\operatorname{sech} }^2}x} \right)dx} = {e^x}\ln \cosh x - {e^x}\tanh x + c \\
\]
Hence, option A is correct.
Note:
We need to know that while finding the value of indefinite integral, we have to add the constant in the final answer or else the answer will be incomplete. We have to be really thorough with the integrations and differentiation of the functions. The key point in this question is to use the integration by parts \[\int {fg'} = fg - \int {f'g} \] to solve this problem. Do not forget that many integrals can be evaluated in multiple ways and so more than one technique may be used on it, but this problem can only be solved by parts.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE
