
Find the value of $ \int {\dfrac{{2\cos x}}{{\left( {1 - \sin x} \right)\left( {1 + {{\sin }^2}x} \right)}}} dx $ .
Answer
540.3k+ views
Hint: The given question is related to the concept of integration. The sub-topic of integration is limited. Here in this given question, we will have to solve the limit. The limits can be solved using the methods of direct substitution, factoring and cancelling, expanding and simplifying, combining factors, by multiplying by the conjugate and many more. We will solve this question by using a partial fraction method.
For rational function $ \dfrac{{p{x^2} + qx + r}}{{\left( {x - a} \right)\left( {{x^2} + bx + c} \right)}} $ , the form of partial fraction is $ \dfrac{A}{{x - a}} + \dfrac{{Bx + C}}{{{x^2} + bx + c}} $ , where A and B are real numbers.
Complete step-by-step answer:
Given is $ \int {\dfrac{{2\cos x}}{{\left( {1 - \sin x} \right)\left( {1 + {{\sin }^2}x} \right)}}} dx $
Let,
$
\Rightarrow \sin x = y \\
\Rightarrow \cos x.dx = dy \\
$
Substituting these values in the given limit, we get
$ \therefore \int {\dfrac{{2\cos x}}{{\left( {1 - \sin x} \right)\left( {1 + {{\sin }^2}x} \right)}}.} dx = \int {\dfrac{2}{{\left( {1 - y} \right)\left( {1 + {y^2}} \right)}}} .dy $
Now, by partial fraction, let
$ \Rightarrow \dfrac{2}{{\left( {1 - y} \right)\left( {1 + {y^2}} \right)}} = \dfrac{A}{{1 - y}} + \dfrac{{By + C}}{{1 + {y^2}}} $
Where real numbers A and B are to be determined.
Solving it gives,
$
\Rightarrow 2 = A\left( {1 + {y^2}} \right) + \left( {By + C} \right)\left( {1 - y} \right) \\
\Rightarrow 2 = A + A{y^2} + By + C - B{y^2} - Cy \\
\Rightarrow 2 = \left( {A - B} \right){y^2} + \left( {B - C} \right)y + A + C \\
$
Now, we compare the coefficients of $ {y^2},y $ and the constant terms. We get,
$
\Rightarrow A - B = 0 \\
\Rightarrow B - C = 0 \\
\Rightarrow A + C = 2 \;
$
After solving these equations, we get $ A = B = C = 1 $
$
\Rightarrow \int {\dfrac{{2\cos x}}{{\left( {1 - \sin x} \right)\left( {1 + {{\sin }^2}x} \right)}}} .dx \\
= \int {\dfrac{2}{{\left( {1 - y} \right)\left( {1 + {y^2}} \right)}}} .dy \\
= \int {\dfrac{1}{{1 - y}}} .dy + \int {\dfrac{{y + 1}}{{1 + {y^2}}}} .dt \\
= \int {\dfrac{1}{{1 - y}}} .dy + \dfrac{1}{2}\int {\dfrac{{2y}}{{1 + {y^2}}}} .dy + \int {\dfrac{1}{{1 + {y^2}}}} .dy \\
= - \log \left| {1 - y} \right| + \dfrac{1}{2}\log \left| {1 + {y^2}} \right| + {\tan ^{ - 1}}y + C \\
= \log \left| {\dfrac{{\sqrt {1 + {y^2}} }}{{1 - y}}} \right| + {\tan ^{ - 1}}y + C \\
= \log \dfrac{{\sqrt {1 + {{\sin }^2}x} }}{{1 - \sin x}} + {\tan ^{ - 1}}\left( {\sin x} \right) + C \;
$
Therefore, the required answer is $ \log \dfrac{{\sqrt {1 + {{\sin }^2}x} }}{{1 - \sin x}} + {\tan ^{ - 1}}\left( {\sin x} \right) + C $
So, the correct answer is “$ \log \dfrac{{\sqrt {1 + {{\sin }^2}x} }}{{1 - \sin x}} + {\tan ^{ - 1}}\left( {\sin x} \right) + C $”.
Note: There are different ways to solve a limit. All different ways have different answers. But all those answers are correct as long as the method and the steps are done correctly without any mistakes. Here in this question, we used the method of partial fraction to solve the limit. The rational equation and its partial fraction is an identity which means that it is a statement which is true for all permissible values of x. Fun fact- the equal sign is used to indicate that the statement is an equation meaning to indicate that the statement is true only for certain values of x.
For rational function $ \dfrac{{p{x^2} + qx + r}}{{\left( {x - a} \right)\left( {{x^2} + bx + c} \right)}} $ , the form of partial fraction is $ \dfrac{A}{{x - a}} + \dfrac{{Bx + C}}{{{x^2} + bx + c}} $ , where A and B are real numbers.
Complete step-by-step answer:
Given is $ \int {\dfrac{{2\cos x}}{{\left( {1 - \sin x} \right)\left( {1 + {{\sin }^2}x} \right)}}} dx $
Let,
$
\Rightarrow \sin x = y \\
\Rightarrow \cos x.dx = dy \\
$
Substituting these values in the given limit, we get
$ \therefore \int {\dfrac{{2\cos x}}{{\left( {1 - \sin x} \right)\left( {1 + {{\sin }^2}x} \right)}}.} dx = \int {\dfrac{2}{{\left( {1 - y} \right)\left( {1 + {y^2}} \right)}}} .dy $
Now, by partial fraction, let
$ \Rightarrow \dfrac{2}{{\left( {1 - y} \right)\left( {1 + {y^2}} \right)}} = \dfrac{A}{{1 - y}} + \dfrac{{By + C}}{{1 + {y^2}}} $
Where real numbers A and B are to be determined.
Solving it gives,
$
\Rightarrow 2 = A\left( {1 + {y^2}} \right) + \left( {By + C} \right)\left( {1 - y} \right) \\
\Rightarrow 2 = A + A{y^2} + By + C - B{y^2} - Cy \\
\Rightarrow 2 = \left( {A - B} \right){y^2} + \left( {B - C} \right)y + A + C \\
$
Now, we compare the coefficients of $ {y^2},y $ and the constant terms. We get,
$
\Rightarrow A - B = 0 \\
\Rightarrow B - C = 0 \\
\Rightarrow A + C = 2 \;
$
After solving these equations, we get $ A = B = C = 1 $
$
\Rightarrow \int {\dfrac{{2\cos x}}{{\left( {1 - \sin x} \right)\left( {1 + {{\sin }^2}x} \right)}}} .dx \\
= \int {\dfrac{2}{{\left( {1 - y} \right)\left( {1 + {y^2}} \right)}}} .dy \\
= \int {\dfrac{1}{{1 - y}}} .dy + \int {\dfrac{{y + 1}}{{1 + {y^2}}}} .dt \\
= \int {\dfrac{1}{{1 - y}}} .dy + \dfrac{1}{2}\int {\dfrac{{2y}}{{1 + {y^2}}}} .dy + \int {\dfrac{1}{{1 + {y^2}}}} .dy \\
= - \log \left| {1 - y} \right| + \dfrac{1}{2}\log \left| {1 + {y^2}} \right| + {\tan ^{ - 1}}y + C \\
= \log \left| {\dfrac{{\sqrt {1 + {y^2}} }}{{1 - y}}} \right| + {\tan ^{ - 1}}y + C \\
= \log \dfrac{{\sqrt {1 + {{\sin }^2}x} }}{{1 - \sin x}} + {\tan ^{ - 1}}\left( {\sin x} \right) + C \;
$
Therefore, the required answer is $ \log \dfrac{{\sqrt {1 + {{\sin }^2}x} }}{{1 - \sin x}} + {\tan ^{ - 1}}\left( {\sin x} \right) + C $
So, the correct answer is “$ \log \dfrac{{\sqrt {1 + {{\sin }^2}x} }}{{1 - \sin x}} + {\tan ^{ - 1}}\left( {\sin x} \right) + C $”.
Note: There are different ways to solve a limit. All different ways have different answers. But all those answers are correct as long as the method and the steps are done correctly without any mistakes. Here in this question, we used the method of partial fraction to solve the limit. The rational equation and its partial fraction is an identity which means that it is a statement which is true for all permissible values of x. Fun fact- the equal sign is used to indicate that the statement is an equation meaning to indicate that the statement is true only for certain values of x.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

