Answer
Verified
426.6k+ views
Hint: Here we will write all the terms in the form of \[\tan x\] by using the below-mentioned formulas:
\[\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] , \[\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] and \[\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}\] .
Complete step-by-step solution:
Step 1: We will replace the terms \[\sin x\] and \[\cos x\] by substituting the values of them in the form of \[\tan x\] as shown below:
\[I = \int {\dfrac{1}{{3 + 2\left( {\dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right)}}dx} \]
By opening the brackets and multiplying \[2\]inside the term \[\left( {\dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right)\] , we get:
\[ \Rightarrow I = \int {\dfrac{1}{{\dfrac{{4\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + 3}}dx} \] ……………………….. (1)
Step 2: By taking \[1 + {\tan ^2}\dfrac{x}{2}\] common from the denominator and adding the numerator terms in the above expression (1), we get:
\[ \Rightarrow I = \int {\dfrac{1}{{\dfrac{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\dfrac{x}{2}}}}}dx} \]
By bringing \[1 + {\tan ^2}\dfrac{x}{2}\] into the numerator position, we get:
\[ \Rightarrow I = \int {\dfrac{{1 + {{\tan }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}dx} \] ………….. (2)
As we know that \[1 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2}\] , so by replacing it in the above expression (2), we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}dx} \]
By opening the brackets in the denominator of the above expression we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3 + 3{{\tan }^2}\dfrac{x}{2} + 1 - {{\tan }^2}\dfrac{x}{2}}}dx} \]
By doing simple addition and subtraction in the denominator part of the above expression we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}dx} \] …………………… (3)
Step 3: Now, we will assume that \[\tan \dfrac{x}{2} = t\] and differentiating it w.r.t \[t\] , we get:
\[ \Rightarrow {\sec ^2}\left( {\dfrac{x}{2}} \right) \times \dfrac{1}{2}dx = dt\]
We can write the above expression as below by bringing \[2\] into the RHS side:
\[ \Rightarrow {\sec ^2}\left( {\dfrac{x}{2}} \right)dx = 2dt\]
By substituting these values in the expression (3), we get:
\[ \Rightarrow I = \int {\dfrac{{2dt}}{{4t + 2{\operatorname{t} ^2} + 4}}} \] \[\left( {\because \tan \dfrac{x}{2} = t,{{\sec }^2}\dfrac{x}{2}dx = 2dt} \right)\]
By dividing the RHS side with \[2\], we get:
\[ \Rightarrow I = \int {\dfrac{{dt}}{{2t + {\operatorname{t} ^2} + 2}}} \]
By writing the term \[2t + {\operatorname{t} ^2} + 2 = {\left( {t + 1} \right)^2} + {\left( 1 \right)^2}\]in the RHS side of the expression \[I = \int {\dfrac{{dt}}{{2t + {\operatorname{t} ^2} + 2}}} \] , we get:
\[ \Rightarrow I = \int {\dfrac{{dt}}{{{{\left( {t + 1} \right)}^2} + {{\left( 1 \right)}^2}}}} \] …………………. (4)
Step 4: As we know that \[\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + {\text{c}}\] , where \[{\text{c}}\] is an arbitrary constant. Comparing the above expression (4) with this formula, we get:
\[ \Rightarrow I = \dfrac{1}{1}{\tan ^{ - 1}}\dfrac{{\left( {t + 1} \right)}}{1} + {\text{c}}\]
By substituting the value of \[t = \tan \dfrac{x}{2}\] , in the above expression we get:
\[ \Rightarrow I = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2} + 1} \right) + {\text{c}}\]
$ \therefore$ The value of \[\int {\dfrac{1}{{3 + 2\sin x + \cos x}}dx} = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2} + 1} \right) + {\text{c}}\]
Note: In solving these types of question students should remember some basic formulas as given below:
\[\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] , \[\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] and \[\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}\] , these are known as tangent half-angle formulas.
\[\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + {\text{c}}\] , proof of which is showing below:
Suppose we need to evaluate the integral \[\dfrac{1}{{{x^2} + {a^2}}}dx\] for \[a \ne 0\]. So, by multiplying and dividing the expression with \[{a^2}\] , we get:
\[ \Rightarrow \int {\dfrac{1}{{{x^2} + {a^2}}}dx = \int {\dfrac{1}{{1 + \dfrac{{{x^2}}}{{{a^2}}}}}\dfrac{{dx}}{{{a^2}}}} } \]
Now by writing the terms \[\dfrac{x}{a} = u\] and differentiating it, we get:
\[ \Rightarrow \dfrac{{dx}}{a} = du\]
By substituting this value in the above expression \[\int {\dfrac{1}{{{x^2} + {a^2}}}dx = \int {\dfrac{1}{{1 + \dfrac{{{x^2}}}{{{a^2}}}}}\dfrac{{dx}}{{{a^2}}}} } \] , we get:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}\int {\dfrac{{du}}{{1 + {u^2}}}} } \]
We can write the above expression as below:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}u + {\text{c}}} \] , where \[{\text{c}}\] is an arbitrary constant.
By substituting the value of \[\dfrac{x}{a} = u\] in the above expression, we get:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\dfrac{x}{a} + {\text{c}}} \]
\[\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] , \[\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] and \[\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}\] .
Complete step-by-step solution:
Step 1: We will replace the terms \[\sin x\] and \[\cos x\] by substituting the values of them in the form of \[\tan x\] as shown below:
\[I = \int {\dfrac{1}{{3 + 2\left( {\dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right)}}dx} \]
By opening the brackets and multiplying \[2\]inside the term \[\left( {\dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right)\] , we get:
\[ \Rightarrow I = \int {\dfrac{1}{{\dfrac{{4\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + 3}}dx} \] ……………………….. (1)
Step 2: By taking \[1 + {\tan ^2}\dfrac{x}{2}\] common from the denominator and adding the numerator terms in the above expression (1), we get:
\[ \Rightarrow I = \int {\dfrac{1}{{\dfrac{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\dfrac{x}{2}}}}}dx} \]
By bringing \[1 + {\tan ^2}\dfrac{x}{2}\] into the numerator position, we get:
\[ \Rightarrow I = \int {\dfrac{{1 + {{\tan }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}dx} \] ………….. (2)
As we know that \[1 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2}\] , so by replacing it in the above expression (2), we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}dx} \]
By opening the brackets in the denominator of the above expression we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3 + 3{{\tan }^2}\dfrac{x}{2} + 1 - {{\tan }^2}\dfrac{x}{2}}}dx} \]
By doing simple addition and subtraction in the denominator part of the above expression we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}dx} \] …………………… (3)
Step 3: Now, we will assume that \[\tan \dfrac{x}{2} = t\] and differentiating it w.r.t \[t\] , we get:
\[ \Rightarrow {\sec ^2}\left( {\dfrac{x}{2}} \right) \times \dfrac{1}{2}dx = dt\]
We can write the above expression as below by bringing \[2\] into the RHS side:
\[ \Rightarrow {\sec ^2}\left( {\dfrac{x}{2}} \right)dx = 2dt\]
By substituting these values in the expression (3), we get:
\[ \Rightarrow I = \int {\dfrac{{2dt}}{{4t + 2{\operatorname{t} ^2} + 4}}} \] \[\left( {\because \tan \dfrac{x}{2} = t,{{\sec }^2}\dfrac{x}{2}dx = 2dt} \right)\]
By dividing the RHS side with \[2\], we get:
\[ \Rightarrow I = \int {\dfrac{{dt}}{{2t + {\operatorname{t} ^2} + 2}}} \]
By writing the term \[2t + {\operatorname{t} ^2} + 2 = {\left( {t + 1} \right)^2} + {\left( 1 \right)^2}\]in the RHS side of the expression \[I = \int {\dfrac{{dt}}{{2t + {\operatorname{t} ^2} + 2}}} \] , we get:
\[ \Rightarrow I = \int {\dfrac{{dt}}{{{{\left( {t + 1} \right)}^2} + {{\left( 1 \right)}^2}}}} \] …………………. (4)
Step 4: As we know that \[\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + {\text{c}}\] , where \[{\text{c}}\] is an arbitrary constant. Comparing the above expression (4) with this formula, we get:
\[ \Rightarrow I = \dfrac{1}{1}{\tan ^{ - 1}}\dfrac{{\left( {t + 1} \right)}}{1} + {\text{c}}\]
By substituting the value of \[t = \tan \dfrac{x}{2}\] , in the above expression we get:
\[ \Rightarrow I = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2} + 1} \right) + {\text{c}}\]
$ \therefore$ The value of \[\int {\dfrac{1}{{3 + 2\sin x + \cos x}}dx} = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2} + 1} \right) + {\text{c}}\]
Note: In solving these types of question students should remember some basic formulas as given below:
\[\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] , \[\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] and \[\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}\] , these are known as tangent half-angle formulas.
\[\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + {\text{c}}\] , proof of which is showing below:
Suppose we need to evaluate the integral \[\dfrac{1}{{{x^2} + {a^2}}}dx\] for \[a \ne 0\]. So, by multiplying and dividing the expression with \[{a^2}\] , we get:
\[ \Rightarrow \int {\dfrac{1}{{{x^2} + {a^2}}}dx = \int {\dfrac{1}{{1 + \dfrac{{{x^2}}}{{{a^2}}}}}\dfrac{{dx}}{{{a^2}}}} } \]
Now by writing the terms \[\dfrac{x}{a} = u\] and differentiating it, we get:
\[ \Rightarrow \dfrac{{dx}}{a} = du\]
By substituting this value in the above expression \[\int {\dfrac{1}{{{x^2} + {a^2}}}dx = \int {\dfrac{1}{{1 + \dfrac{{{x^2}}}{{{a^2}}}}}\dfrac{{dx}}{{{a^2}}}} } \] , we get:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}\int {\dfrac{{du}}{{1 + {u^2}}}} } \]
We can write the above expression as below:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}u + {\text{c}}} \] , where \[{\text{c}}\] is an arbitrary constant.
By substituting the value of \[\dfrac{x}{a} = u\] in the above expression, we get:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\dfrac{x}{a} + {\text{c}}} \]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE