
Find the value of
(i) ${{x}^{3}}+{{x}^{2}}-x-22$ when $x=1+2i$.
(ii) ${{x}^{3}}-3{{x}^{2}}-8x+15$ when $x=3+i$.
Answer
562.5k+ views
Hint: We first assume the given polynomial as a function form of $y=f\left( x \right)$. We have complex values of the variable x to put in the polynomial. We find the value of $y\left( x \right)$ for the particular value using identities.
Complete step by step answer:
We have a cubic polynomial and a specific complex value of the variable is given.
We take $y=f\left( x \right)$. Then we put the value of the x to find value of y.
As the given value of x is complex, we use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
We use the binomial and cubic identity formula of sum of two numbers.
We have ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}},{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
(i) ${{x}^{3}}+{{x}^{2}}-x-22$ when $x=1+2i$.
Let’s take $y=f\left( x \right)={{x}^{3}}+{{x}^{2}}-x-22$. Value of x is $x=1+2i$.
We need to find \[y=f\left( x=1+2i \right)\].
$\begin{align}
& y\left( x \right)={{x}^{3}}+{{x}^{2}}-x-22 \\
& \Rightarrow y\left( 1+2i \right)={{\left( 1+2i \right)}^{3}}+{{\left( 1+2i \right)}^{2}}-\left( 1+2i \right)-22 \\
\end{align}$
We now simplify the equation and get
$\begin{align}
& y\left( 1+2i \right)={{\left( 1+2i \right)}^{3}}+{{\left( 1+2i \right)}^{2}}-\left( 1+2i \right)-22 \\
& \Rightarrow y\left( 1+2i \right)=1+6i+12{{i}^{2}}+8{{i}^{3}}+1+4i+4{{i}^{2}}-1-2i-22 \\
& \Rightarrow y\left( 1+2i \right)=8i+16{{i}^{2}}+8{{i}^{3}}-21 \\
\end{align}$
We use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
$\begin{align}
& y\left( 1+2i \right)=8i+16{{i}^{2}}+8{{i}^{3}}-21 \\
& \Rightarrow y\left( 1+2i \right)=8i-16-8i-21=-37 \\
\end{align}$
So, the solution of the value is -37.
(ii) ${{x}^{3}}-3{{x}^{2}}-8x+15$ when $x=3+i$.
Let’s take $y=f\left( x \right)={{x}^{3}}-3{{x}^{2}}-8x+15$. Value of x is $x=3+i$.
We need to find \[y=f\left( x=3+i \right)\].
$\begin{align}
& y\left( x \right)={{x}^{3}}-3{{x}^{2}}-8x+15 \\
& \Rightarrow y\left( 3+i \right)={{\left( 3+i \right)}^{3}}-3{{\left( 3+i \right)}^{2}}-8\left( 3+i \right)+15 \\
\end{align}$
We now simplify the equation and get
$\begin{align}
& y\left( 3+i \right)={{\left( 3+i \right)}^{3}}-3{{\left( 3+i \right)}^{2}}-8\left( 3+i \right)+15 \\
& \Rightarrow y\left( 3+i \right)=9+27i+9{{i}^{2}}+{{i}^{3}}-27-18i-3{{i}^{2}}-24-8i+15 \\
& \Rightarrow y\left( 3+i \right)=i+6{{i}^{2}}+{{i}^{3}}-27 \\
\end{align}$
We use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
$\begin{align}
& y\left( 3+i \right)=i+6{{i}^{2}}+{{i}^{3}}-27 \\
& \Rightarrow y\left( 3+i \right)=i-6-i-27=-33 \\
\end{align}$
So, the solution of the value is -33.
Note: We don’t need to find the zero of the polynomials even though in some cases the value of the polynomial will become 0. That particular value becomes the root of the polynomial. In other cases, we are just finding the image of the value for the given function. Here the preimages are $x=1+2i$, $x=3+i$.
Complete step by step answer:
We have a cubic polynomial and a specific complex value of the variable is given.
We take $y=f\left( x \right)$. Then we put the value of the x to find value of y.
As the given value of x is complex, we use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
We use the binomial and cubic identity formula of sum of two numbers.
We have ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}},{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
(i) ${{x}^{3}}+{{x}^{2}}-x-22$ when $x=1+2i$.
Let’s take $y=f\left( x \right)={{x}^{3}}+{{x}^{2}}-x-22$. Value of x is $x=1+2i$.
We need to find \[y=f\left( x=1+2i \right)\].
$\begin{align}
& y\left( x \right)={{x}^{3}}+{{x}^{2}}-x-22 \\
& \Rightarrow y\left( 1+2i \right)={{\left( 1+2i \right)}^{3}}+{{\left( 1+2i \right)}^{2}}-\left( 1+2i \right)-22 \\
\end{align}$
We now simplify the equation and get
$\begin{align}
& y\left( 1+2i \right)={{\left( 1+2i \right)}^{3}}+{{\left( 1+2i \right)}^{2}}-\left( 1+2i \right)-22 \\
& \Rightarrow y\left( 1+2i \right)=1+6i+12{{i}^{2}}+8{{i}^{3}}+1+4i+4{{i}^{2}}-1-2i-22 \\
& \Rightarrow y\left( 1+2i \right)=8i+16{{i}^{2}}+8{{i}^{3}}-21 \\
\end{align}$
We use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
$\begin{align}
& y\left( 1+2i \right)=8i+16{{i}^{2}}+8{{i}^{3}}-21 \\
& \Rightarrow y\left( 1+2i \right)=8i-16-8i-21=-37 \\
\end{align}$
So, the solution of the value is -37.
(ii) ${{x}^{3}}-3{{x}^{2}}-8x+15$ when $x=3+i$.
Let’s take $y=f\left( x \right)={{x}^{3}}-3{{x}^{2}}-8x+15$. Value of x is $x=3+i$.
We need to find \[y=f\left( x=3+i \right)\].
$\begin{align}
& y\left( x \right)={{x}^{3}}-3{{x}^{2}}-8x+15 \\
& \Rightarrow y\left( 3+i \right)={{\left( 3+i \right)}^{3}}-3{{\left( 3+i \right)}^{2}}-8\left( 3+i \right)+15 \\
\end{align}$
We now simplify the equation and get
$\begin{align}
& y\left( 3+i \right)={{\left( 3+i \right)}^{3}}-3{{\left( 3+i \right)}^{2}}-8\left( 3+i \right)+15 \\
& \Rightarrow y\left( 3+i \right)=9+27i+9{{i}^{2}}+{{i}^{3}}-27-18i-3{{i}^{2}}-24-8i+15 \\
& \Rightarrow y\left( 3+i \right)=i+6{{i}^{2}}+{{i}^{3}}-27 \\
\end{align}$
We use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
$\begin{align}
& y\left( 3+i \right)=i+6{{i}^{2}}+{{i}^{3}}-27 \\
& \Rightarrow y\left( 3+i \right)=i-6-i-27=-33 \\
\end{align}$
So, the solution of the value is -33.
Note: We don’t need to find the zero of the polynomials even though in some cases the value of the polynomial will become 0. That particular value becomes the root of the polynomial. In other cases, we are just finding the image of the value for the given function. Here the preimages are $x=1+2i$, $x=3+i$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

