
Find the value of
(i) ${{x}^{3}}+{{x}^{2}}-x-22$ when $x=1+2i$.
(ii) ${{x}^{3}}-3{{x}^{2}}-8x+15$ when $x=3+i$.
Answer
576.3k+ views
Hint: We first assume the given polynomial as a function form of $y=f\left( x \right)$. We have complex values of the variable x to put in the polynomial. We find the value of $y\left( x \right)$ for the particular value using identities.
Complete step by step answer:
We have a cubic polynomial and a specific complex value of the variable is given.
We take $y=f\left( x \right)$. Then we put the value of the x to find value of y.
As the given value of x is complex, we use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
We use the binomial and cubic identity formula of sum of two numbers.
We have ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}},{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
(i) ${{x}^{3}}+{{x}^{2}}-x-22$ when $x=1+2i$.
Let’s take $y=f\left( x \right)={{x}^{3}}+{{x}^{2}}-x-22$. Value of x is $x=1+2i$.
We need to find \[y=f\left( x=1+2i \right)\].
$\begin{align}
& y\left( x \right)={{x}^{3}}+{{x}^{2}}-x-22 \\
& \Rightarrow y\left( 1+2i \right)={{\left( 1+2i \right)}^{3}}+{{\left( 1+2i \right)}^{2}}-\left( 1+2i \right)-22 \\
\end{align}$
We now simplify the equation and get
$\begin{align}
& y\left( 1+2i \right)={{\left( 1+2i \right)}^{3}}+{{\left( 1+2i \right)}^{2}}-\left( 1+2i \right)-22 \\
& \Rightarrow y\left( 1+2i \right)=1+6i+12{{i}^{2}}+8{{i}^{3}}+1+4i+4{{i}^{2}}-1-2i-22 \\
& \Rightarrow y\left( 1+2i \right)=8i+16{{i}^{2}}+8{{i}^{3}}-21 \\
\end{align}$
We use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
$\begin{align}
& y\left( 1+2i \right)=8i+16{{i}^{2}}+8{{i}^{3}}-21 \\
& \Rightarrow y\left( 1+2i \right)=8i-16-8i-21=-37 \\
\end{align}$
So, the solution of the value is -37.
(ii) ${{x}^{3}}-3{{x}^{2}}-8x+15$ when $x=3+i$.
Let’s take $y=f\left( x \right)={{x}^{3}}-3{{x}^{2}}-8x+15$. Value of x is $x=3+i$.
We need to find \[y=f\left( x=3+i \right)\].
$\begin{align}
& y\left( x \right)={{x}^{3}}-3{{x}^{2}}-8x+15 \\
& \Rightarrow y\left( 3+i \right)={{\left( 3+i \right)}^{3}}-3{{\left( 3+i \right)}^{2}}-8\left( 3+i \right)+15 \\
\end{align}$
We now simplify the equation and get
$\begin{align}
& y\left( 3+i \right)={{\left( 3+i \right)}^{3}}-3{{\left( 3+i \right)}^{2}}-8\left( 3+i \right)+15 \\
& \Rightarrow y\left( 3+i \right)=9+27i+9{{i}^{2}}+{{i}^{3}}-27-18i-3{{i}^{2}}-24-8i+15 \\
& \Rightarrow y\left( 3+i \right)=i+6{{i}^{2}}+{{i}^{3}}-27 \\
\end{align}$
We use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
$\begin{align}
& y\left( 3+i \right)=i+6{{i}^{2}}+{{i}^{3}}-27 \\
& \Rightarrow y\left( 3+i \right)=i-6-i-27=-33 \\
\end{align}$
So, the solution of the value is -33.
Note: We don’t need to find the zero of the polynomials even though in some cases the value of the polynomial will become 0. That particular value becomes the root of the polynomial. In other cases, we are just finding the image of the value for the given function. Here the preimages are $x=1+2i$, $x=3+i$.
Complete step by step answer:
We have a cubic polynomial and a specific complex value of the variable is given.
We take $y=f\left( x \right)$. Then we put the value of the x to find value of y.
As the given value of x is complex, we use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
We use the binomial and cubic identity formula of sum of two numbers.
We have ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}},{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
(i) ${{x}^{3}}+{{x}^{2}}-x-22$ when $x=1+2i$.
Let’s take $y=f\left( x \right)={{x}^{3}}+{{x}^{2}}-x-22$. Value of x is $x=1+2i$.
We need to find \[y=f\left( x=1+2i \right)\].
$\begin{align}
& y\left( x \right)={{x}^{3}}+{{x}^{2}}-x-22 \\
& \Rightarrow y\left( 1+2i \right)={{\left( 1+2i \right)}^{3}}+{{\left( 1+2i \right)}^{2}}-\left( 1+2i \right)-22 \\
\end{align}$
We now simplify the equation and get
$\begin{align}
& y\left( 1+2i \right)={{\left( 1+2i \right)}^{3}}+{{\left( 1+2i \right)}^{2}}-\left( 1+2i \right)-22 \\
& \Rightarrow y\left( 1+2i \right)=1+6i+12{{i}^{2}}+8{{i}^{3}}+1+4i+4{{i}^{2}}-1-2i-22 \\
& \Rightarrow y\left( 1+2i \right)=8i+16{{i}^{2}}+8{{i}^{3}}-21 \\
\end{align}$
We use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
$\begin{align}
& y\left( 1+2i \right)=8i+16{{i}^{2}}+8{{i}^{3}}-21 \\
& \Rightarrow y\left( 1+2i \right)=8i-16-8i-21=-37 \\
\end{align}$
So, the solution of the value is -37.
(ii) ${{x}^{3}}-3{{x}^{2}}-8x+15$ when $x=3+i$.
Let’s take $y=f\left( x \right)={{x}^{3}}-3{{x}^{2}}-8x+15$. Value of x is $x=3+i$.
We need to find \[y=f\left( x=3+i \right)\].
$\begin{align}
& y\left( x \right)={{x}^{3}}-3{{x}^{2}}-8x+15 \\
& \Rightarrow y\left( 3+i \right)={{\left( 3+i \right)}^{3}}-3{{\left( 3+i \right)}^{2}}-8\left( 3+i \right)+15 \\
\end{align}$
We now simplify the equation and get
$\begin{align}
& y\left( 3+i \right)={{\left( 3+i \right)}^{3}}-3{{\left( 3+i \right)}^{2}}-8\left( 3+i \right)+15 \\
& \Rightarrow y\left( 3+i \right)=9+27i+9{{i}^{2}}+{{i}^{3}}-27-18i-3{{i}^{2}}-24-8i+15 \\
& \Rightarrow y\left( 3+i \right)=i+6{{i}^{2}}+{{i}^{3}}-27 \\
\end{align}$
We use identities like ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
$\begin{align}
& y\left( 3+i \right)=i+6{{i}^{2}}+{{i}^{3}}-27 \\
& \Rightarrow y\left( 3+i \right)=i-6-i-27=-33 \\
\end{align}$
So, the solution of the value is -33.
Note: We don’t need to find the zero of the polynomials even though in some cases the value of the polynomial will become 0. That particular value becomes the root of the polynomial. In other cases, we are just finding the image of the value for the given function. Here the preimages are $x=1+2i$, $x=3+i$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

