
Find the value of given limit $ \mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^2}}}{{\sin \pi x}} $
Answer
577.2k+ views
Hint: For limit problems in which the limit of the function is not zero, we will make the limit of the function first zero. This can be done by using substitution of x = a + h with $ h \to 0 $ and then simplifying the limit of the function so formed after substitution by using standard limit formulas.
$ \sin \left( {\pi + x} \right) = - \sin x $ and \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\]
Complete step-by-step answer:
In the given limit problem we see that the limit of function is not zero.
Therefore, we first make the limit to zero by doing substitution.
Let $ x = 1 + h $ where $ h \to 0 $
Substituting above value of ‘x’ in given limit function we have
$ \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - {{\left( {1 + h} \right)}^2}}}{{\sin \pi \left( {1 + h} \right)}} $
\[
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - {{\left( {1 + h} \right)}^2}}}{{\sin \left( {\pi + \pi h} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - {{\left( {1 + h} \right)}^2}}}{{ - \sin \left( {\pi h} \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \sin \left( {\pi + \theta } \right) = - \sin \theta \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \left( {1 + {h^2} + 2h} \right)}}{{ - \sin \left( {\pi h} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - 1 + {h^2} + 2h}}{{ - \sin \left( {\pi h} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{ - {h^2} - 2h}}{{ - \sin \left( {\pi h} \right)}}\, \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{ - h\left( {h + 2} \right)}}{{ - \sin \left( {\pi h} \right)}}\, \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {h + 2} \right)}}{{\sin \left( {\pi h} \right)}}\, \\
\]
Multiply and divide by $ \pi h $ in the denominator of the above equation.
\[ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {h + 2} \right)}}{{\dfrac{{\sin \left( {\pi h} \right)}}{{\pi h}} \times \pi h}}\,\]
\[
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {h + 2} \right)}}{{\pi h}}\, \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {h + 2} \right)}}{\pi }\, \\
\]
Substituting limit $ h \to 0 $ we have
$ \dfrac{2}{\pi } $
Hence, from above we see that limit of the function $ \mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^2}}}{{\sin \pi x}} $ is $ \dfrac{2}{\pi } $ .
Note: For all limits problems if limit is not zero then first make its limit zero by substitution and then using standard formulas of limits like $ \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1,\,\,\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1\,\,and\,\,\mathop {\lim }\limits_{x \to 0} \cos x = 1 $ to evaluate limit of the function so formed after substitution.
$ \sin \left( {\pi + x} \right) = - \sin x $ and \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\]
Complete step-by-step answer:
In the given limit problem we see that the limit of function is not zero.
Therefore, we first make the limit to zero by doing substitution.
Let $ x = 1 + h $ where $ h \to 0 $
Substituting above value of ‘x’ in given limit function we have
$ \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - {{\left( {1 + h} \right)}^2}}}{{\sin \pi \left( {1 + h} \right)}} $
\[
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - {{\left( {1 + h} \right)}^2}}}{{\sin \left( {\pi + \pi h} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - {{\left( {1 + h} \right)}^2}}}{{ - \sin \left( {\pi h} \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \sin \left( {\pi + \theta } \right) = - \sin \theta \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \left( {1 + {h^2} + 2h} \right)}}{{ - \sin \left( {\pi h} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - 1 + {h^2} + 2h}}{{ - \sin \left( {\pi h} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{ - {h^2} - 2h}}{{ - \sin \left( {\pi h} \right)}}\, \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{ - h\left( {h + 2} \right)}}{{ - \sin \left( {\pi h} \right)}}\, \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {h + 2} \right)}}{{\sin \left( {\pi h} \right)}}\, \\
\]
Multiply and divide by $ \pi h $ in the denominator of the above equation.
\[ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {h + 2} \right)}}{{\dfrac{{\sin \left( {\pi h} \right)}}{{\pi h}} \times \pi h}}\,\]
\[
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {h + 2} \right)}}{{\pi h}}\, \\
\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {h + 2} \right)}}{\pi }\, \\
\]
Substituting limit $ h \to 0 $ we have
$ \dfrac{2}{\pi } $
Hence, from above we see that limit of the function $ \mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^2}}}{{\sin \pi x}} $ is $ \dfrac{2}{\pi } $ .
Note: For all limits problems if limit is not zero then first make its limit zero by substitution and then using standard formulas of limits like $ \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1,\,\,\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1\,\,and\,\,\mathop {\lim }\limits_{x \to 0} \cos x = 1 $ to evaluate limit of the function so formed after substitution.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain zero factorial class 11 maths CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

SiO2GeO2 SnOand PbOare respectively A acidic amphoteric class 11 chemistry CBSE

