
Find the value of following integral $\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}$.
$\begin{align}
& \text{a) }\dfrac{2}{3} \\
& \text{b) }0 \\
& \text{c) }\dfrac{-4}{3} \\
& \text{d) }\dfrac{4}{3} \\
\end{align}$
Answer
513k+ views
Hint: Now first we use the property $\left| x \right|=x$ if x > 0, and $\left| x \right|=-x$ if x < 0 and split the integral in two parts $\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\int\limits_{0}^{\dfrac{\pi}{2}}{{{\left| \cos x \right|}^{3}}dx}+\int\limits_{\dfrac{\pi }{2}}^{\pi }{{{\left| \cos x \right|}^{3}}dx}$. Now we can easily solve each integration as we know $\int{\cos x}=\sin x+C$.
Complete step-by-step solution:
First divide the integral in two parts as $\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\left| \cos x \right|}^{3}}dx}+\int\limits_{\dfrac{\pi }{2}}^{\pi }{{{\left| \cos x \right|}^{3}}dx}$. We know that the function $\left| x \right|=x$ if x > 0, and $\left| x \right|=-x$ if x < 0.
Here for $0\le x\le \dfrac{\pi }{2},\cos x\ge 0$ and for $\dfrac{\pi }{2}\le x\le \pi ,\cos x\le 0$
Hence we get $\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\left( \cos x \right)}^{3}}dx}-\int\limits_{\dfrac{\pi }{2}}^{\pi }{{{\left( \cos x \right)}^{3}}dx}................(1)$
Now we know $\cos 3x=4{{\cos }^{3}}x-3\cos x$ . Rearranging the terms we get.
${{\cos }^{3}}x=\left( \dfrac{\cos 3x+3\cos x}{4} \right)$ .
Substituting this in equation (1) we get
$\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos 3x+3\cos x}{4} \right)dx}-\int\limits_{\dfrac{\pi }{2}}^{\pi }{\left( \dfrac{\cos 3x+3\cos x}{4} \right)dx}$
Now we know that $\int{cx=c\int{x}}$ hence taking the constant out of integration we get
$\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \cos 3x+3\cos x \right)dx}-\dfrac{1}{4}\int\limits_{\dfrac{\pi }{2}}^{\pi }{\left( \cos 3x+3\cos x \right)dx}$
Now also we know that \[\int{\left( f+g \right)}=\int{f}+\int{g}\] . Hence using this property we get
$\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \cos 3x+3\cos x \right)dx}-\dfrac{1}{4}\int\limits_{\dfrac{\pi }{2}}^{\pi }{\left( \cos 3x+3\cos x \right)dx}$
$\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 3xdx}+\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{3\cos xdx}-\dfrac{1}{4}\int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos 3xdx}-\dfrac{1}{4}\int\limits_{\dfrac{\pi }{2}}^{\pi }{3\cos xdx}$
Now taking $\dfrac{1}{4}$ common from the equation we get
\[\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\left[ \int\limits_{0}^{\dfrac{\pi }{2}}{\cos 3xdx}+\int\limits_{0}^{\dfrac{\pi }{2}}{3\cos xdx}-\int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos 3xdx}-\int\limits_{\dfrac{\pi }{2}}^{\pi }{3\cos xdx} \right]...........(2)\]
Now let us first evaluate the integral $\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 3x}dx$. Now we will use method of substitution to solve this method. Hence let us substitute $3x=t$ . Now differentiation on both sides we get $3dx=dt$ .
Hence we have $3x=t\Rightarrow dx=\dfrac{dt}{3}$ Also note that as \[x\to 0,3x=t\to 0\] and as $x\to \dfrac{\pi }{2},3x=t\to \dfrac{3\pi }{2}$
\[\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{2}}{\cos 3x}=\int\limits_{0}^{\dfrac{3\pi }{2}}{\dfrac{\cos tdt}{3}} \\
& =\dfrac{1}{3}{{\left[ \sin t \right]}^{\dfrac{3\pi }{2}}}_{0} \\
& =\dfrac{1}{3}\left[ \sin \left( \dfrac{3\pi }{2} \right)-\sin 0 \right] \\
& =\dfrac{1}{3}\left[ -1-0 \right] \\
& =-\dfrac{1}{3} \\
\end{align}\]
Hence we get $\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 3xdx=-\dfrac{1}{3}}..................(3)$
Now let us evaluate $\int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos 3x}dx$. Now we will use method of substitution to solve this method. Hence let us substitute $3x=t$ . Now differentiation on both sides we get $3dx=dt$ .
Hence we have $3x=t\Rightarrow dx=\dfrac{dt}{3}$ Also note that as \[x\to \pi ,3x=t\to 3\pi \] and as $x\to \dfrac{\pi }{2},3x=t\to \dfrac{3\pi }{2}$
\[\begin{align}
& \int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos 3x}=\int\limits_{\dfrac{3\pi }{2}}^{3\pi }{\dfrac{\cos tdt}{3}} \\
& =\dfrac{1}{3}{{\left[ \sin t \right]}^{3\pi }}_{\dfrac{3\pi }{2}} \\
& =\dfrac{1}{3}\left[ \sin \left( 3\pi \right)-\sin \left( \dfrac{3\pi }{2} \right) \right] \\
& =\dfrac{1}{3}\left[ 0-(-1) \right] \\
& =\dfrac{1}{3} \\
\end{align}\]
Hence we get $\int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos 3xdx=\dfrac{1}{3}}..................(4)$
Now let us evaluate $\int\limits_{\dfrac{\pi }{2}}^{\pi }{3\cos x}dx$.
\[\begin{align}
& \int\limits_{\dfrac{\pi }{2}}^{\pi }{3\cos x}dx=3\int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos x} \\
& =3{{\left[ \sin x \right]}^{\pi }}_{\dfrac{\pi }{2}} \\
& =3\left[ \sin \left( \pi \right)-\sin \left( \dfrac{\pi }{2} \right) \right] \\
& =3\left[ 0-1 \right] \\
& =-3 \\
\end{align}\]
$\int\limits_{\dfrac{\pi }{2}}^{\pi }{3\cos xdx=-3}......................(5)$
Now let us evaluate $\int\limits_{0}^{\dfrac{\pi }{2}}{3\cos x}dx$.
\[\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{2}}{3\cos x}dx=3\int\limits_{0}^{\dfrac{\pi }{2}}{\cos x} \\
& =3{{\left[ \sin x \right]}^{\dfrac{\pi }{2}}}_{0} \\
& =3\left[ \sin \left( \dfrac{\pi }{2} \right)-\sin \left( 0 \right) \right] \\
& =3\left[ 1-0 \right] \\
& =3 \\
\end{align}\]
\[\int\limits_{0}^{\dfrac{\pi }{2}}{3\cos xdx=3}......................(6)\]
Now from equation (2), equation (3), equation (4), equation (5) and equation (6) we get.
\[\begin{align}
& \int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\left[ -\dfrac{1}{3}+3-\left( -3 \right)-\dfrac{1}{3} \right] \\
& \int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\left[ 6-\dfrac{2}{3} \right]
& \int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\left[ \dfrac{18-2}{3} \right] \\
& \int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\left[ \dfrac{16}{3} \right] \ & \int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\left[ \dfrac{4}{3} \right] \\
\end{align}\]
Hence we get the value of $\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}$ = $\dfrac{4}{3}$
Option d is the correct option.
Note: While using the method of substitution for integration note that the limits will also change. Hence if we substitute f(x) = t and the limits of x are a to b. then the limit of t is f(a) to f(b). Here we need to be careful while breaking the limit like for the mode function we have to find in which interval it is negative and positive.
Complete step-by-step solution:
First divide the integral in two parts as $\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\left| \cos x \right|}^{3}}dx}+\int\limits_{\dfrac{\pi }{2}}^{\pi }{{{\left| \cos x \right|}^{3}}dx}$. We know that the function $\left| x \right|=x$ if x > 0, and $\left| x \right|=-x$ if x < 0.
Here for $0\le x\le \dfrac{\pi }{2},\cos x\ge 0$ and for $\dfrac{\pi }{2}\le x\le \pi ,\cos x\le 0$
Hence we get $\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\left( \cos x \right)}^{3}}dx}-\int\limits_{\dfrac{\pi }{2}}^{\pi }{{{\left( \cos x \right)}^{3}}dx}................(1)$
Now we know $\cos 3x=4{{\cos }^{3}}x-3\cos x$ . Rearranging the terms we get.
${{\cos }^{3}}x=\left( \dfrac{\cos 3x+3\cos x}{4} \right)$ .
Substituting this in equation (1) we get
$\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos 3x+3\cos x}{4} \right)dx}-\int\limits_{\dfrac{\pi }{2}}^{\pi }{\left( \dfrac{\cos 3x+3\cos x}{4} \right)dx}$
Now we know that $\int{cx=c\int{x}}$ hence taking the constant out of integration we get
$\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \cos 3x+3\cos x \right)dx}-\dfrac{1}{4}\int\limits_{\dfrac{\pi }{2}}^{\pi }{\left( \cos 3x+3\cos x \right)dx}$
Now also we know that \[\int{\left( f+g \right)}=\int{f}+\int{g}\] . Hence using this property we get
$\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \cos 3x+3\cos x \right)dx}-\dfrac{1}{4}\int\limits_{\dfrac{\pi }{2}}^{\pi }{\left( \cos 3x+3\cos x \right)dx}$
$\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 3xdx}+\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{3\cos xdx}-\dfrac{1}{4}\int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos 3xdx}-\dfrac{1}{4}\int\limits_{\dfrac{\pi }{2}}^{\pi }{3\cos xdx}$
Now taking $\dfrac{1}{4}$ common from the equation we get
\[\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\left[ \int\limits_{0}^{\dfrac{\pi }{2}}{\cos 3xdx}+\int\limits_{0}^{\dfrac{\pi }{2}}{3\cos xdx}-\int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos 3xdx}-\int\limits_{\dfrac{\pi }{2}}^{\pi }{3\cos xdx} \right]...........(2)\]
Now let us first evaluate the integral $\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 3x}dx$. Now we will use method of substitution to solve this method. Hence let us substitute $3x=t$ . Now differentiation on both sides we get $3dx=dt$ .
Hence we have $3x=t\Rightarrow dx=\dfrac{dt}{3}$ Also note that as \[x\to 0,3x=t\to 0\] and as $x\to \dfrac{\pi }{2},3x=t\to \dfrac{3\pi }{2}$
\[\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{2}}{\cos 3x}=\int\limits_{0}^{\dfrac{3\pi }{2}}{\dfrac{\cos tdt}{3}} \\
& =\dfrac{1}{3}{{\left[ \sin t \right]}^{\dfrac{3\pi }{2}}}_{0} \\
& =\dfrac{1}{3}\left[ \sin \left( \dfrac{3\pi }{2} \right)-\sin 0 \right] \\
& =\dfrac{1}{3}\left[ -1-0 \right] \\
& =-\dfrac{1}{3} \\
\end{align}\]
Hence we get $\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 3xdx=-\dfrac{1}{3}}..................(3)$
Now let us evaluate $\int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos 3x}dx$. Now we will use method of substitution to solve this method. Hence let us substitute $3x=t$ . Now differentiation on both sides we get $3dx=dt$ .
Hence we have $3x=t\Rightarrow dx=\dfrac{dt}{3}$ Also note that as \[x\to \pi ,3x=t\to 3\pi \] and as $x\to \dfrac{\pi }{2},3x=t\to \dfrac{3\pi }{2}$
\[\begin{align}
& \int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos 3x}=\int\limits_{\dfrac{3\pi }{2}}^{3\pi }{\dfrac{\cos tdt}{3}} \\
& =\dfrac{1}{3}{{\left[ \sin t \right]}^{3\pi }}_{\dfrac{3\pi }{2}} \\
& =\dfrac{1}{3}\left[ \sin \left( 3\pi \right)-\sin \left( \dfrac{3\pi }{2} \right) \right] \\
& =\dfrac{1}{3}\left[ 0-(-1) \right] \\
& =\dfrac{1}{3} \\
\end{align}\]
Hence we get $\int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos 3xdx=\dfrac{1}{3}}..................(4)$
Now let us evaluate $\int\limits_{\dfrac{\pi }{2}}^{\pi }{3\cos x}dx$.
\[\begin{align}
& \int\limits_{\dfrac{\pi }{2}}^{\pi }{3\cos x}dx=3\int\limits_{\dfrac{\pi }{2}}^{\pi }{\cos x} \\
& =3{{\left[ \sin x \right]}^{\pi }}_{\dfrac{\pi }{2}} \\
& =3\left[ \sin \left( \pi \right)-\sin \left( \dfrac{\pi }{2} \right) \right] \\
& =3\left[ 0-1 \right] \\
& =-3 \\
\end{align}\]
$\int\limits_{\dfrac{\pi }{2}}^{\pi }{3\cos xdx=-3}......................(5)$
Now let us evaluate $\int\limits_{0}^{\dfrac{\pi }{2}}{3\cos x}dx$.
\[\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{2}}{3\cos x}dx=3\int\limits_{0}^{\dfrac{\pi }{2}}{\cos x} \\
& =3{{\left[ \sin x \right]}^{\dfrac{\pi }{2}}}_{0} \\
& =3\left[ \sin \left( \dfrac{\pi }{2} \right)-\sin \left( 0 \right) \right] \\
& =3\left[ 1-0 \right] \\
& =3 \\
\end{align}\]
\[\int\limits_{0}^{\dfrac{\pi }{2}}{3\cos xdx=3}......................(6)\]
Now from equation (2), equation (3), equation (4), equation (5) and equation (6) we get.
\[\begin{align}
& \int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\left[ -\dfrac{1}{3}+3-\left( -3 \right)-\dfrac{1}{3} \right] \\
& \int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\left[ 6-\dfrac{2}{3} \right]
& \int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\left[ \dfrac{18-2}{3} \right] \\
& \int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\dfrac{1}{4}\left[ \dfrac{16}{3} \right] \ & \int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}=\left[ \dfrac{4}{3} \right] \\
\end{align}\]
Hence we get the value of $\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}$ = $\dfrac{4}{3}$
Option d is the correct option.
Note: While using the method of substitution for integration note that the limits will also change. Hence if we substitute f(x) = t and the limits of x are a to b. then the limit of t is f(a) to f(b). Here we need to be careful while breaking the limit like for the mode function we have to find in which interval it is negative and positive.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
