
Find the value of each of the following:
1)${\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)$
2)${\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{\sqrt 3 }}} \right)$
3)${\tan ^{ - 1}}\left( {\cos \left( {\dfrac{\pi }{2}} \right)} \right)$
4)${\tan ^{ - 1}}\left( {2\cos \left( {\dfrac{{2\pi }}{3}} \right)} \right)$
Answer
506.7k+ views
Hint: To find the solution of each of these inverse tangent functions, we have to find the value of the tangent function of the values in the bracket, because we know,
${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $
And, for those, in which the cosine functions are given separately inside the bracket, we have to change the cosine function into tangent function using the triangle formula and use required operations to find the required values.
Complete step-by-step solution:
1) ${\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)$
Now, we know, $\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$
Replacing this in the given function, we get,
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{6}} \right)$
Now, we know, ${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $.
Therefore, using this trigonometric property, we get,
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{6}} \right) = \dfrac{\pi }{6}$
2) ${\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{\sqrt 3 }}} \right)$
We know, the principle domain of ${\tan ^{ - 1}}$ lies in $\left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right)$.
So, we know, $\tan \left( {\dfrac{{ - \pi }}{6}} \right) = \dfrac{{ - 1}}{{\sqrt 3 }}$.
Therefore, we can write the inverse function as,
${\tan ^{ - 1}}\left( {\tan \left( {\dfrac{{ - \pi }}{6}} \right)} \right)$
Now, using the property ${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $, we get,
${\tan ^{ - 1}}\left( {\tan \left( {\dfrac{{ - \pi }}{6}} \right)} \right) = \dfrac{{ - \pi }}{6}$
3) ${\tan ^{ - 1}}\left( {\cos \left( {\dfrac{\pi }{2}} \right)} \right)$
We know, $\cos \dfrac{\pi }{2} = 0$.
So, ${\tan ^{ - 1}}\left( 0 \right)$.
Also we know, $\tan \left( 0 \right) = 0$.
So, we can write it as,
${\tan ^{ - 1}}\left( {\tan 0} \right)$
Now, using the property ${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $, we get,
${\tan ^{ - 1}}\left( {\tan 0} \right) = 0$
4) ${\tan ^{ - 1}}\left( {2\cos \left( {\dfrac{{2\pi }}{3}} \right)} \right)$
The angle $\dfrac{{2\pi }}{3}$ lies in the 2nd quadrant.
So, we can write it as, $\dfrac{{2\pi }}{3} = \pi - \dfrac{\pi }{3}$.
Substituting this value in the cosine part, we get,
$\cos \left( {\pi - \dfrac{\pi }{3}} \right)$
Since, cosine functions are negative in the 2nd quadrant, so,
$\cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) = - \cos \dfrac{\pi }{3}$
$ \Rightarrow \cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) = - \dfrac{1}{2}$
Now, replacing this value in the inverse trigonometric function, we get,
${\tan ^{ - 1}}\left( {2\left( { - \dfrac{1}{2}} \right)} \right)$
$ = {\tan ^{ - 1}}\left( { - 1} \right)$
We know, the principle domain of ${\tan ^{ - 1}}$ lies in $\left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right)$.
So, we can write,
$\tan \left( {\dfrac{{ - \pi }}{4}} \right) = - 1$
So, we can write the inverse trigonometric function as,
${\tan ^{ - 1}}\left( {\tan \left( {\dfrac{{ - \pi }}{4}} \right)} \right)$
Now, using the property ${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $, we get,
${\tan ^{ - 1}}\left( {\tan \left( {\dfrac{{ - \pi }}{4}} \right)} \right) = \dfrac{{ - \pi }}{4}$
Note: The trigonometric functions are periodic circular functions and can extend within the Cartesian plane up to infinity. So, every trigonometric function as well as inverse trigonometric functions have their domains ( principle domains) already assigned, in case in the question no domain is specified, we are to find the value of the trigonometric function within their principal domain.
${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $
And, for those, in which the cosine functions are given separately inside the bracket, we have to change the cosine function into tangent function using the triangle formula and use required operations to find the required values.
Complete step-by-step solution:
1) ${\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)$
Now, we know, $\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$
Replacing this in the given function, we get,
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{6}} \right)$
Now, we know, ${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $.
Therefore, using this trigonometric property, we get,
${\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{6}} \right) = \dfrac{\pi }{6}$
2) ${\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{\sqrt 3 }}} \right)$
We know, the principle domain of ${\tan ^{ - 1}}$ lies in $\left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right)$.
So, we know, $\tan \left( {\dfrac{{ - \pi }}{6}} \right) = \dfrac{{ - 1}}{{\sqrt 3 }}$.
Therefore, we can write the inverse function as,
${\tan ^{ - 1}}\left( {\tan \left( {\dfrac{{ - \pi }}{6}} \right)} \right)$
Now, using the property ${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $, we get,
${\tan ^{ - 1}}\left( {\tan \left( {\dfrac{{ - \pi }}{6}} \right)} \right) = \dfrac{{ - \pi }}{6}$
3) ${\tan ^{ - 1}}\left( {\cos \left( {\dfrac{\pi }{2}} \right)} \right)$
We know, $\cos \dfrac{\pi }{2} = 0$.
So, ${\tan ^{ - 1}}\left( 0 \right)$.
Also we know, $\tan \left( 0 \right) = 0$.
So, we can write it as,
${\tan ^{ - 1}}\left( {\tan 0} \right)$
Now, using the property ${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $, we get,
${\tan ^{ - 1}}\left( {\tan 0} \right) = 0$
4) ${\tan ^{ - 1}}\left( {2\cos \left( {\dfrac{{2\pi }}{3}} \right)} \right)$
The angle $\dfrac{{2\pi }}{3}$ lies in the 2nd quadrant.
So, we can write it as, $\dfrac{{2\pi }}{3} = \pi - \dfrac{\pi }{3}$.
Substituting this value in the cosine part, we get,
$\cos \left( {\pi - \dfrac{\pi }{3}} \right)$
Since, cosine functions are negative in the 2nd quadrant, so,
$\cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) = - \cos \dfrac{\pi }{3}$
$ \Rightarrow \cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) = - \dfrac{1}{2}$
Now, replacing this value in the inverse trigonometric function, we get,
${\tan ^{ - 1}}\left( {2\left( { - \dfrac{1}{2}} \right)} \right)$
$ = {\tan ^{ - 1}}\left( { - 1} \right)$
We know, the principle domain of ${\tan ^{ - 1}}$ lies in $\left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right)$.
So, we can write,
$\tan \left( {\dfrac{{ - \pi }}{4}} \right) = - 1$
So, we can write the inverse trigonometric function as,
${\tan ^{ - 1}}\left( {\tan \left( {\dfrac{{ - \pi }}{4}} \right)} \right)$
Now, using the property ${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $, we get,
${\tan ^{ - 1}}\left( {\tan \left( {\dfrac{{ - \pi }}{4}} \right)} \right) = \dfrac{{ - \pi }}{4}$
Note: The trigonometric functions are periodic circular functions and can extend within the Cartesian plane up to infinity. So, every trigonometric function as well as inverse trigonometric functions have their domains ( principle domains) already assigned, in case in the question no domain is specified, we are to find the value of the trigonometric function within their principal domain.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

