
Find the value of \[\displaystyle \lim_{x \to 0}{{\left| x \right|}^{\sin x}}\]
(a) 0
(b) 1
(c) -1
(d) None of the above
Answer
556.5k+ views
Hint: We solve this problem by using the left hand limit and right hand limit.
For a limit \[\displaystyle \lim_{x \to a}f\left( x \right)\] the left hand limit and the right hand limit are given as
\[\Rightarrow LHL=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)\]
\[\Rightarrow RHL=\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)\]
We have the definition of limit that is
\[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\]
Then if LHL and RHL both exist and are equal then we can say that the original limit \[\displaystyle \lim_{x \to a}f\left( x \right)\] is defined and equal to LHL and RHL. If the LHL and RHL doesn’t exist then we can say that the limit \[\displaystyle \lim_{x \to a}f\left( x \right)\] is not defined. We also use the modulus function definition that is
\[\Rightarrow \left| x \right|=\left\{ \begin{align}
& x,x>0 \\
& -x,x<0 \\
\end{align} \right.\]
Here we can see that there is a function power of another function then we apply logarithm on both sides to find the limit if we get an indeterminate form. Then we can use the L - Hopital’s rule to find the limit. The L – hopital’s rule is given as
\[\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]
Complete step-by-step answer:
We are given that the limit as \[\displaystyle \lim_{x \to 0}{{\left| x \right|}^{\sin x}}\]
Now, let us find the left hand limit and the right hand limit.
We know that for a limit \[\displaystyle \lim_{x \to a}f\left( x \right)\] the left hand limit and the right hand limit are given as
\[\Rightarrow LHL=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)\]
\[\Rightarrow RHL=\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)\]
By using this formula to given limit then we get the left hand limit as
\[\Rightarrow LHL=\displaystyle \lim_{x \to {{0}^{-}}}{{\left| x \right|}^{\sin x}}\]
We know that the modulus function is defined as
\[\Rightarrow \left| x \right|=\left\{ \begin{align}
& x,x>0 \\
& -x,x<0 \\
\end{align} \right.\]
Here we can see that for the LHL the \['x'\] approaches 0 from the left side.
We know that the numbers that are left of 0 are negative numbers that are less than zero,
So, by using the definition of the modulus function in LHL we get
\[\Rightarrow LHL=\displaystyle \lim_{x \to {{0}^{-}}}{{\left( -x \right)}^{\sin x}}\]
We know that the definition of limit that is
\[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\]
By using the this formula to above equation we get
\[\begin{align}
& \Rightarrow LHL={{\left( -0 \right)}^{\sin 0}} \\
& \Rightarrow LHL={{0}^{0}} \\
\end{align}\]
We know that \[{{0}^{0}}\] is an indeterminate form
So, let us apply the logarithm function for LHL then we get
\[\begin{align}
& \Rightarrow \ln \left( LHL \right)=\ln \left( \displaystyle \lim_{x \to {{0}^{-}}}{{\left( -x \right)}^{\sin x}} \right) \\
& \Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \ln {{\left( -x \right)}^{\sin x}} \right) \\
\end{align}\]
We know that the formula of logarithms that is
\[\Rightarrow \ln \left( {{z}^{b}} \right)=b\ln z\]
By using this formula to above equation we get
\[\begin{align}
& \Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \sin x.\ln \left( -x \right) \right) \\
& \Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\ln \left( -x \right)}{\csc x} \right) \\
\end{align}\]
We know that the L – hopital’s rule is given as
\[\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]
By using this rule to above equation we get
\[\Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\dfrac{d}{dx}\left( \ln \left( -x \right) \right)}{\dfrac{d}{dx}\left( \csc x \right)} \right)\]
We know that the formulas of derivatives that are
\[\begin{align}
& \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} \\
& \dfrac{d}{dx}\left( \csc x \right)=-\csc x.\cot x \\
\end{align}\]
By using the above formulas in LHL we get
\[\begin{align}
& \Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\dfrac{1}{-x}}{-\csc x.\cot x} \right) \\
& \Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\sin x.\tan x}{x} \right) \\
\end{align}\]
Here we can see that the RHS is getting an indeterminate form.
So, by applying the L – hopital’s rule again we get
\[\Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\dfrac{d}{dx}\left( \sin x.\tan x \right)}{\dfrac{d}{dx}\left( x \right)} \right)\]
We know that the chain rule of derivatives that is
\[\dfrac{d}{dx}\left( f\left( x \right)\times g\left( x \right) \right)={f}'\left( x \right)\times g\left( x \right)+f\left( x \right)\times {g}'\left( x \right)\]
By using the chain rule in above equation we get
\[\Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\cos x.\tan x+\sin x.{{\sec }^{2}}x}{1} \right)\]
Now, by expanding the limit we get
\[\begin{align}
& \Rightarrow \ln \left( LHL \right)=\cos 0.\tan 0+\sin 0.{{\sec }^{2}}0 \\
& \Rightarrow \ln \left( LHL \right)=0 \\
& \Rightarrow LHL={{e}^{0}}=1 \\
\end{align}\]
Therefore, we can see that the value of LHL is 1
Now let us find the value of RHL then we get
\[\Rightarrow RHL=\displaystyle \lim_{x \to {{0}^{+}}}{{\left| x \right|}^{\sin x}}\]
Now, by using the definition of modulus function we get
\[\Rightarrow RHL=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x \right)}^{\sin x}}\]
We know that the definition of limit that is
\[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\]
By using the this formula to above equation we get
\[\begin{align}
& \Rightarrow RHL={{\left( 0 \right)}^{\sin 0}} \\
& \Rightarrow RHL={{0}^{0}} \\
\end{align}\]
We know that \[{{0}^{0}}\] is an indeterminate form
So, let us apply the logarithm function for RHL then we get
\[\begin{align}
& \Rightarrow \ln \left( RHL \right)=\ln \left( \displaystyle \lim_{x \to {{0}^{+}}}{{\left( x \right)}^{\sin x}} \right) \\
& \Rightarrow \ln \left( RHL \right)=\displaystyle \lim_{x \to {{0}^{+}}}\left( \ln {{\left( x \right)}^{\sin x}} \right) \\
\end{align}\]
We know that the formula of logarithms that is
\[\Rightarrow \ln \left( {{z}^{b}} \right)=b\ln z\]
By using this formula to above equation we get
\[\begin{align}
& \Rightarrow \ln \left( RHL \right)=\displaystyle \lim_{x \to {{0}^{+}}}\left( \sin x.\ln \left( x \right) \right) \\
& \Rightarrow \ln \left( RHL \right)=\displaystyle \lim_{x \to {{0}^{+}}}\left( \dfrac{\ln \left( x \right)}{\csc x} \right) \\
\end{align}\]
We know that the L – hopital’s rule is given as
\[\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]
By using this rule to above equation we get
\[\Rightarrow \ln \left( RHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\dfrac{d}{dx}\left( \ln \left( x \right) \right)}{\dfrac{d}{dx}\left( \csc x \right)} \right)\]
We know that the formulas of derivatives that are
\[\begin{align}
& \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} \\
& \dfrac{d}{dx}\left( \csc x \right)=-\csc x.\cot x \\
\end{align}\]
By using the above formulas in RHL we get
\[\begin{align}
& \Rightarrow \ln \left( RHL \right)=\displaystyle \lim_{x \to {{0}^{+}}}\left( \dfrac{\dfrac{1}{x}}{-\csc x.\cot x} \right) \\
& \Rightarrow \ln \left( RHL \right)=-\displaystyle \lim_{x \to {{0}^{+}}}\left( \dfrac{\sin x.\tan x}{x} \right) \\
\end{align}\]
Here we can see that the RHS is getting an indeterminate form.
So, by applying the L – hopital’s rule again we get
\[\Rightarrow \ln \left( RHL \right)=-\displaystyle \lim_{x \to {{0}^{+}}}\left( \dfrac{\dfrac{d}{dx}\left( \sin x.\tan x \right)}{\dfrac{d}{dx}\left( x \right)} \right)\]
We know that the chain rule of derivatives that is
\[\dfrac{d}{dx}\left( f\left( x \right)\times g\left( x \right) \right)={f}'\left( x \right)\times g\left( x \right)+f\left( x \right)\times {g}'\left( x \right)\]
By using the chain rule in above equation we get
\[\Rightarrow \ln \left( RHL \right)=-\displaystyle \lim_{x \to {{0}^{+}}}\left( \dfrac{\cos x.\tan x+\sin x.{{\sec }^{2}}x}{1} \right)\]
Now, by expanding the limit we get
\[\begin{align}
& \Rightarrow \ln \left( RHL \right)=-\left( \cos 0.\tan 0+\sin 0.{{\sec }^{2}}0 \right) \\
& \Rightarrow \ln \left( RHL \right)=-0 \\
& \Rightarrow RHL={{e}^{-0}}=1 \\
\end{align}\]
Here we can see that both LHL and RHS both exist and are equal to 1
Therefore we can conclude that
\[\therefore \displaystyle \lim_{x \to 0}{{\left| x \right|}^{\sin x}}=1\]
So, the correct answer is “Option B”.
Note: Students may stop the problem in the middle and give the wrong answer.
We got the LHL initially as
\[\begin{align}
& \Rightarrow LHL={{\left( -0 \right)}^{\sin 0}} \\
& \Rightarrow LHL={{0}^{0}} \\
\end{align}\]
Here, it is the undetermined form. So, we need to apply the logarithm function on both sides of LHL and use the L – hospital rule to find the value of LHL.
But students may stop the solution there and gives the answer as the limit \[\displaystyle \lim_{x \to 0}{{\left| x \right|}^{\sin x}}\] does not exist
But when we get an undetermined form then we need to go for alternatives to find the required limit.
For a limit \[\displaystyle \lim_{x \to a}f\left( x \right)\] the left hand limit and the right hand limit are given as
\[\Rightarrow LHL=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)\]
\[\Rightarrow RHL=\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)\]
We have the definition of limit that is
\[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\]
Then if LHL and RHL both exist and are equal then we can say that the original limit \[\displaystyle \lim_{x \to a}f\left( x \right)\] is defined and equal to LHL and RHL. If the LHL and RHL doesn’t exist then we can say that the limit \[\displaystyle \lim_{x \to a}f\left( x \right)\] is not defined. We also use the modulus function definition that is
\[\Rightarrow \left| x \right|=\left\{ \begin{align}
& x,x>0 \\
& -x,x<0 \\
\end{align} \right.\]
Here we can see that there is a function power of another function then we apply logarithm on both sides to find the limit if we get an indeterminate form. Then we can use the L - Hopital’s rule to find the limit. The L – hopital’s rule is given as
\[\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]
Complete step-by-step answer:
We are given that the limit as \[\displaystyle \lim_{x \to 0}{{\left| x \right|}^{\sin x}}\]
Now, let us find the left hand limit and the right hand limit.
We know that for a limit \[\displaystyle \lim_{x \to a}f\left( x \right)\] the left hand limit and the right hand limit are given as
\[\Rightarrow LHL=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)\]
\[\Rightarrow RHL=\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)\]
By using this formula to given limit then we get the left hand limit as
\[\Rightarrow LHL=\displaystyle \lim_{x \to {{0}^{-}}}{{\left| x \right|}^{\sin x}}\]
We know that the modulus function is defined as
\[\Rightarrow \left| x \right|=\left\{ \begin{align}
& x,x>0 \\
& -x,x<0 \\
\end{align} \right.\]
Here we can see that for the LHL the \['x'\] approaches 0 from the left side.
We know that the numbers that are left of 0 are negative numbers that are less than zero,
So, by using the definition of the modulus function in LHL we get
\[\Rightarrow LHL=\displaystyle \lim_{x \to {{0}^{-}}}{{\left( -x \right)}^{\sin x}}\]
We know that the definition of limit that is
\[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\]
By using the this formula to above equation we get
\[\begin{align}
& \Rightarrow LHL={{\left( -0 \right)}^{\sin 0}} \\
& \Rightarrow LHL={{0}^{0}} \\
\end{align}\]
We know that \[{{0}^{0}}\] is an indeterminate form
So, let us apply the logarithm function for LHL then we get
\[\begin{align}
& \Rightarrow \ln \left( LHL \right)=\ln \left( \displaystyle \lim_{x \to {{0}^{-}}}{{\left( -x \right)}^{\sin x}} \right) \\
& \Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \ln {{\left( -x \right)}^{\sin x}} \right) \\
\end{align}\]
We know that the formula of logarithms that is
\[\Rightarrow \ln \left( {{z}^{b}} \right)=b\ln z\]
By using this formula to above equation we get
\[\begin{align}
& \Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \sin x.\ln \left( -x \right) \right) \\
& \Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\ln \left( -x \right)}{\csc x} \right) \\
\end{align}\]
We know that the L – hopital’s rule is given as
\[\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]
By using this rule to above equation we get
\[\Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\dfrac{d}{dx}\left( \ln \left( -x \right) \right)}{\dfrac{d}{dx}\left( \csc x \right)} \right)\]
We know that the formulas of derivatives that are
\[\begin{align}
& \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} \\
& \dfrac{d}{dx}\left( \csc x \right)=-\csc x.\cot x \\
\end{align}\]
By using the above formulas in LHL we get
\[\begin{align}
& \Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\dfrac{1}{-x}}{-\csc x.\cot x} \right) \\
& \Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\sin x.\tan x}{x} \right) \\
\end{align}\]
Here we can see that the RHS is getting an indeterminate form.
So, by applying the L – hopital’s rule again we get
\[\Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\dfrac{d}{dx}\left( \sin x.\tan x \right)}{\dfrac{d}{dx}\left( x \right)} \right)\]
We know that the chain rule of derivatives that is
\[\dfrac{d}{dx}\left( f\left( x \right)\times g\left( x \right) \right)={f}'\left( x \right)\times g\left( x \right)+f\left( x \right)\times {g}'\left( x \right)\]
By using the chain rule in above equation we get
\[\Rightarrow \ln \left( LHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\cos x.\tan x+\sin x.{{\sec }^{2}}x}{1} \right)\]
Now, by expanding the limit we get
\[\begin{align}
& \Rightarrow \ln \left( LHL \right)=\cos 0.\tan 0+\sin 0.{{\sec }^{2}}0 \\
& \Rightarrow \ln \left( LHL \right)=0 \\
& \Rightarrow LHL={{e}^{0}}=1 \\
\end{align}\]
Therefore, we can see that the value of LHL is 1
Now let us find the value of RHL then we get
\[\Rightarrow RHL=\displaystyle \lim_{x \to {{0}^{+}}}{{\left| x \right|}^{\sin x}}\]
Now, by using the definition of modulus function we get
\[\Rightarrow RHL=\displaystyle \lim_{x \to {{0}^{+}}}{{\left( x \right)}^{\sin x}}\]
We know that the definition of limit that is
\[\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)\]
By using the this formula to above equation we get
\[\begin{align}
& \Rightarrow RHL={{\left( 0 \right)}^{\sin 0}} \\
& \Rightarrow RHL={{0}^{0}} \\
\end{align}\]
We know that \[{{0}^{0}}\] is an indeterminate form
So, let us apply the logarithm function for RHL then we get
\[\begin{align}
& \Rightarrow \ln \left( RHL \right)=\ln \left( \displaystyle \lim_{x \to {{0}^{+}}}{{\left( x \right)}^{\sin x}} \right) \\
& \Rightarrow \ln \left( RHL \right)=\displaystyle \lim_{x \to {{0}^{+}}}\left( \ln {{\left( x \right)}^{\sin x}} \right) \\
\end{align}\]
We know that the formula of logarithms that is
\[\Rightarrow \ln \left( {{z}^{b}} \right)=b\ln z\]
By using this formula to above equation we get
\[\begin{align}
& \Rightarrow \ln \left( RHL \right)=\displaystyle \lim_{x \to {{0}^{+}}}\left( \sin x.\ln \left( x \right) \right) \\
& \Rightarrow \ln \left( RHL \right)=\displaystyle \lim_{x \to {{0}^{+}}}\left( \dfrac{\ln \left( x \right)}{\csc x} \right) \\
\end{align}\]
We know that the L – hopital’s rule is given as
\[\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]
By using this rule to above equation we get
\[\Rightarrow \ln \left( RHL \right)=\displaystyle \lim_{x \to {{0}^{-}}}\left( \dfrac{\dfrac{d}{dx}\left( \ln \left( x \right) \right)}{\dfrac{d}{dx}\left( \csc x \right)} \right)\]
We know that the formulas of derivatives that are
\[\begin{align}
& \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} \\
& \dfrac{d}{dx}\left( \csc x \right)=-\csc x.\cot x \\
\end{align}\]
By using the above formulas in RHL we get
\[\begin{align}
& \Rightarrow \ln \left( RHL \right)=\displaystyle \lim_{x \to {{0}^{+}}}\left( \dfrac{\dfrac{1}{x}}{-\csc x.\cot x} \right) \\
& \Rightarrow \ln \left( RHL \right)=-\displaystyle \lim_{x \to {{0}^{+}}}\left( \dfrac{\sin x.\tan x}{x} \right) \\
\end{align}\]
Here we can see that the RHS is getting an indeterminate form.
So, by applying the L – hopital’s rule again we get
\[\Rightarrow \ln \left( RHL \right)=-\displaystyle \lim_{x \to {{0}^{+}}}\left( \dfrac{\dfrac{d}{dx}\left( \sin x.\tan x \right)}{\dfrac{d}{dx}\left( x \right)} \right)\]
We know that the chain rule of derivatives that is
\[\dfrac{d}{dx}\left( f\left( x \right)\times g\left( x \right) \right)={f}'\left( x \right)\times g\left( x \right)+f\left( x \right)\times {g}'\left( x \right)\]
By using the chain rule in above equation we get
\[\Rightarrow \ln \left( RHL \right)=-\displaystyle \lim_{x \to {{0}^{+}}}\left( \dfrac{\cos x.\tan x+\sin x.{{\sec }^{2}}x}{1} \right)\]
Now, by expanding the limit we get
\[\begin{align}
& \Rightarrow \ln \left( RHL \right)=-\left( \cos 0.\tan 0+\sin 0.{{\sec }^{2}}0 \right) \\
& \Rightarrow \ln \left( RHL \right)=-0 \\
& \Rightarrow RHL={{e}^{-0}}=1 \\
\end{align}\]
Here we can see that both LHL and RHS both exist and are equal to 1
Therefore we can conclude that
\[\therefore \displaystyle \lim_{x \to 0}{{\left| x \right|}^{\sin x}}=1\]
So, the correct answer is “Option B”.
Note: Students may stop the problem in the middle and give the wrong answer.
We got the LHL initially as
\[\begin{align}
& \Rightarrow LHL={{\left( -0 \right)}^{\sin 0}} \\
& \Rightarrow LHL={{0}^{0}} \\
\end{align}\]
Here, it is the undetermined form. So, we need to apply the logarithm function on both sides of LHL and use the L – hospital rule to find the value of LHL.
But students may stop the solution there and gives the answer as the limit \[\displaystyle \lim_{x \to 0}{{\left| x \right|}^{\sin x}}\] does not exist
But when we get an undetermined form then we need to go for alternatives to find the required limit.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

