
Find the value of $\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}}$.
Answer
613.5k+ views
Hint: For solving this as we can see that in the given expression there are some standard trigonometric ratios. So, we will put the value of each term in the given expression directly and then solve for the correct answer.
Complete step-by-step answer:
Given:
We have to evaluate the value of $\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}}$.
Now, before we proceed first we should know the following results:
$\begin{align}
& \sin {{30}^{0}}=\dfrac{1}{2}.............\left( 1 \right) \\
& \cos {{60}^{0}}=\dfrac{1}{2}.............\left( 2 \right) \\
& \cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}...........\left( 3 \right) \\
& \sin {{60}^{0}}=\dfrac{\sqrt{3}}{2}............\left( 4 \right) \\
& \tan {{45}^{0}}=1................\left( 5 \right) \\
& \csc \theta =\dfrac{1}{\sin \theta }.............\left( 6 \right) \\
& \sec \theta =\dfrac{1}{\cos \theta }.............\left( 7 \right) \\
& \cot \theta =\dfrac{1}{\tan \theta }..............\left( 8 \right) \\
\end{align}$
Now, from the above results, we can easily solve this question. Using equation (5) and equation (3) to find the value of $\csc {{60}^{0}}$ . Then,
$\begin{align}
& \csc \theta =\dfrac{1}{\sin \theta } \\
& \Rightarrow \csc {{60}^{0}}=\dfrac{1}{\sin {{60}^{0}}} \\
& \Rightarrow \csc {{60}^{0}}=\dfrac{2}{\sqrt{3}}................\left( 9 \right) \\
\end{align}$
Now, using equation (4) and equation (7) to find the value of $\cot {{45}^{0}}$ . Then,
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \Rightarrow \cot {{45}^{0}}=\dfrac{1}{\tan {{45}^{0}}} \\
& \Rightarrow \cot {{45}^{0}}=1..................\left( 10 \right) \\
\end{align}$
Now, using equation (3) and equation (7) to find the value of $\sec {{30}^{0}}$ . Then,
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \Rightarrow \sec {{30}^{0}}=\dfrac{1}{\cos {{30}^{0}}} \\
& \Rightarrow \sec {{30}^{0}}=\dfrac{2}{\sqrt{3}}................\left( 11 \right) \\
\end{align}$
Now, we will directly put the value of each term in $\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}}$ from the equation (1), equation (2), equation (5), equation (9), equation (10) and equation (11). Then,
$\begin{align}
& \dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}} \\
& \Rightarrow \left( \dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{1+\dfrac{1}{2}-\dfrac{2}{\sqrt{3}}} \right)=\left( \dfrac{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}}{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}} \right) \\
& \Rightarrow 1 \\
\end{align}$
Thus, from the above calculation, we can say that $\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}}$ is equal to 1.
Hint: The question was very easy to solve if we know the values of each term then by avoiding calculation mistakes we can get the correct answer. Moreover, there is another short by which one can directly answer even if we don’t know the values. If $\alpha $ and $\beta $ are two angles such that, $\alpha +\beta ={{90}^{0}}$. Then, $\sin \alpha =\cos \beta $, $\tan \alpha =\cot \beta $ and $\sec \alpha =\csc \beta $. When we put the proper values of $\alpha $ and $\beta $ then we can analyse whether the numerator and denominator of the given expression is equal.
Complete step-by-step answer:
Given:
We have to evaluate the value of $\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}}$.
Now, before we proceed first we should know the following results:
$\begin{align}
& \sin {{30}^{0}}=\dfrac{1}{2}.............\left( 1 \right) \\
& \cos {{60}^{0}}=\dfrac{1}{2}.............\left( 2 \right) \\
& \cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}...........\left( 3 \right) \\
& \sin {{60}^{0}}=\dfrac{\sqrt{3}}{2}............\left( 4 \right) \\
& \tan {{45}^{0}}=1................\left( 5 \right) \\
& \csc \theta =\dfrac{1}{\sin \theta }.............\left( 6 \right) \\
& \sec \theta =\dfrac{1}{\cos \theta }.............\left( 7 \right) \\
& \cot \theta =\dfrac{1}{\tan \theta }..............\left( 8 \right) \\
\end{align}$
Now, from the above results, we can easily solve this question. Using equation (5) and equation (3) to find the value of $\csc {{60}^{0}}$ . Then,
$\begin{align}
& \csc \theta =\dfrac{1}{\sin \theta } \\
& \Rightarrow \csc {{60}^{0}}=\dfrac{1}{\sin {{60}^{0}}} \\
& \Rightarrow \csc {{60}^{0}}=\dfrac{2}{\sqrt{3}}................\left( 9 \right) \\
\end{align}$
Now, using equation (4) and equation (7) to find the value of $\cot {{45}^{0}}$ . Then,
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \Rightarrow \cot {{45}^{0}}=\dfrac{1}{\tan {{45}^{0}}} \\
& \Rightarrow \cot {{45}^{0}}=1..................\left( 10 \right) \\
\end{align}$
Now, using equation (3) and equation (7) to find the value of $\sec {{30}^{0}}$ . Then,
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \Rightarrow \sec {{30}^{0}}=\dfrac{1}{\cos {{30}^{0}}} \\
& \Rightarrow \sec {{30}^{0}}=\dfrac{2}{\sqrt{3}}................\left( 11 \right) \\
\end{align}$
Now, we will directly put the value of each term in $\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}}$ from the equation (1), equation (2), equation (5), equation (9), equation (10) and equation (11). Then,
$\begin{align}
& \dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}} \\
& \Rightarrow \left( \dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{1+\dfrac{1}{2}-\dfrac{2}{\sqrt{3}}} \right)=\left( \dfrac{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}}{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}} \right) \\
& \Rightarrow 1 \\
\end{align}$
Thus, from the above calculation, we can say that $\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}}$ is equal to 1.
Hint: The question was very easy to solve if we know the values of each term then by avoiding calculation mistakes we can get the correct answer. Moreover, there is another short by which one can directly answer even if we don’t know the values. If $\alpha $ and $\beta $ are two angles such that, $\alpha +\beta ={{90}^{0}}$. Then, $\sin \alpha =\cos \beta $, $\tan \alpha =\cot \beta $ and $\sec \alpha =\csc \beta $. When we put the proper values of $\alpha $ and $\beta $ then we can analyse whether the numerator and denominator of the given expression is equal.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

