
Find the value of $ \dfrac{m}{k} $ if 75% of $ m $ is equal to $ k $ % of 25 where $ k>0 $ .
Answer
502.2k+ views
Hint: We first use the percentage values on particular numbers. We get the equation of proportionality. We use that to find the simplified form of $ \dfrac{m}{k} $ .
Complete step-by-step answer:
We know for any arbitrary percentage value of a%, we can write it as $ \dfrac{a}{100} $ . The percentage is to find the respective value out of 100.
Therefore, 75% and $ k $ % can be written as $ \dfrac{75}{100} $ and $ \dfrac{k}{100} $ .
Now we need to find the 75% of $ m $ which is equal to $ m\times \dfrac{75}{100}=\dfrac{3m}{4} $ .
Then we need to find the $ k $ % of 25 which is equal to $ 25\times \dfrac{k}{100}=\dfrac{k}{4} $ .
These two forms are equal which gives the impression of $ \dfrac{3m}{4}=\dfrac{k}{4} $ .
We need to find the simplified form of $ \dfrac{m}{k} $ from the above equation.
Simplified form is achieved when the G.C.D of the denominator and the numerator is 1.
This means we can’t eliminate any more common root from them other than 1.
For the fraction $ \dfrac{x}{y} $ , we first find the G.C.D of the denominator and the numerator. If it’s 1 then it’s already in its simplified form and if the G.C.D of the denominator and the numerator is any other number d then we need to divide the denominator and the numerator with d and get the simplified fraction form as $ \dfrac{{}^{x}/{}_{d}}{{}^{y}/{}_{d}} $ .
For the equation $ \dfrac{3m}{4}=\dfrac{k}{4} $ , we get $ \dfrac{m}{k}=\dfrac{4}{4\times 3}=\dfrac{1}{3} $ . Therefore, the value of $ \dfrac{m}{k} $ is $ \dfrac{m}{k}=\dfrac{1}{3} $ .
So, the correct answer is “ $ \dfrac{1}{3} $ ”.
Note: We need to be careful about the cross-multiplication and finding the GCD of the simplification. Both of the numbers get divided by that GCD to find the ratio of $ m $ and $ k $ .
Complete step-by-step answer:
We know for any arbitrary percentage value of a%, we can write it as $ \dfrac{a}{100} $ . The percentage is to find the respective value out of 100.
Therefore, 75% and $ k $ % can be written as $ \dfrac{75}{100} $ and $ \dfrac{k}{100} $ .
Now we need to find the 75% of $ m $ which is equal to $ m\times \dfrac{75}{100}=\dfrac{3m}{4} $ .
Then we need to find the $ k $ % of 25 which is equal to $ 25\times \dfrac{k}{100}=\dfrac{k}{4} $ .
These two forms are equal which gives the impression of $ \dfrac{3m}{4}=\dfrac{k}{4} $ .
We need to find the simplified form of $ \dfrac{m}{k} $ from the above equation.
Simplified form is achieved when the G.C.D of the denominator and the numerator is 1.
This means we can’t eliminate any more common root from them other than 1.
For the fraction $ \dfrac{x}{y} $ , we first find the G.C.D of the denominator and the numerator. If it’s 1 then it’s already in its simplified form and if the G.C.D of the denominator and the numerator is any other number d then we need to divide the denominator and the numerator with d and get the simplified fraction form as $ \dfrac{{}^{x}/{}_{d}}{{}^{y}/{}_{d}} $ .
For the equation $ \dfrac{3m}{4}=\dfrac{k}{4} $ , we get $ \dfrac{m}{k}=\dfrac{4}{4\times 3}=\dfrac{1}{3} $ . Therefore, the value of $ \dfrac{m}{k} $ is $ \dfrac{m}{k}=\dfrac{1}{3} $ .
So, the correct answer is “ $ \dfrac{1}{3} $ ”.
Note: We need to be careful about the cross-multiplication and finding the GCD of the simplification. Both of the numbers get divided by that GCD to find the ratio of $ m $ and $ k $ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What is the difference between rai and mustard see class 8 biology CBSE


