
Find the value of $\dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2}$.
A) $–1$
B) $1$
C) $–i$
D) $i$
Answer
486.3k+ views
Hint: Use the fact that $i = \sqrt { - 1} $ is a square root of unity. Calculate higher powers of $i$ and simplify the given expression using the law of exponents. Then substitute the values of higher powers of $i$ and use laws of exponents to calculate the value of the given expression.
Complete step-by-step solution:
We have to calculate the value of $\dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2}$. We observe that an expression is a complex number.
We know that $i = \sqrt { - 1} $. We will now calculate higher powers of $i$.
Thus, we have
${i^2} = {\left( {\sqrt { - 1} } \right)^2}$
Square the term,
$ \Rightarrow {i^2} = - 1$
Now find the value of ${i^3}$,
$ \Rightarrow {i^3} = {i^2} \times i$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^3} = - i$
Now find the value of ${i^4}$,
$ \Rightarrow {i^4} = {\left( {{i^2}} \right)^2}$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^4} = {\left( { - 1} \right)^2}$
Square the term,
$ \Rightarrow {i^4} = 1$
The laws of exponents state that,
${a^b} \times {a^c} = {a^{b + c}}$
And,
${\left( {{a^b}} \right)^c} = {a^{bc}}$
So, we can simplify the expression ${i^{4n + 1}}$ as,
$ \Rightarrow {i^{4n + 1}} = {i^{4n}} \times i$
Use the exponent law,
$ \Rightarrow {i^{4n + 1}} = {\left( {{i^4}} \right)^n} \times i$
Substitute the value of ${i^4}$,
$ \Rightarrow {i^{4n + 1}} = {1^n} \times i$
As we know that any power of 1 returns 1.
$ \Rightarrow {i^{4n + 1}} = i$.................….. (1)
Now, we can simplify the expression ${i^{4n - 1}}$ as,
$ \Rightarrow {i^{4n + 1}} = {i^{4n}} \times {i^{ - 1}}$
Use the exponent law,
$ \Rightarrow {i^{4n - 1}} = \dfrac{{{{\left( {{i^4}} \right)}^n}}}{i}$
Substitute the value of ${i^4}$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{{{1^n}}}{i}$
As we know that any power of 1 returns 1.
$ \Rightarrow {i^{4n - 1}} = \dfrac{1}{i}$
Rationalize the term by multiplying numerator and denominator by $i$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{1}{i} \times \dfrac{i}{i}$
Multiply the terms,
$ \Rightarrow {i^{4n - 1}} = \dfrac{i}{{{i^2}}}$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{i}{{ - 1}}$
Simplify the terms,
$ \Rightarrow {i^{4n - 1}} = - i$..............….. (2)
Substitute the values from equation (1) and (2) in original expression,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{i - \left( { - i} \right)}}{2}$
Open the bracket and change the sign accordingly,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{i + i}}{2}$
Add the term in the numerator,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{2i}}{2}$
Cancel out the common factor,
$\therefore \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = i$
So, the value of $\dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2}$ is $i$.
Hence, the option (D) is the correct answer.
Note: The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
Complete step-by-step solution:
We have to calculate the value of $\dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2}$. We observe that an expression is a complex number.
We know that $i = \sqrt { - 1} $. We will now calculate higher powers of $i$.
Thus, we have
${i^2} = {\left( {\sqrt { - 1} } \right)^2}$
Square the term,
$ \Rightarrow {i^2} = - 1$
Now find the value of ${i^3}$,
$ \Rightarrow {i^3} = {i^2} \times i$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^3} = - i$
Now find the value of ${i^4}$,
$ \Rightarrow {i^4} = {\left( {{i^2}} \right)^2}$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^4} = {\left( { - 1} \right)^2}$
Square the term,
$ \Rightarrow {i^4} = 1$
The laws of exponents state that,
${a^b} \times {a^c} = {a^{b + c}}$
And,
${\left( {{a^b}} \right)^c} = {a^{bc}}$
So, we can simplify the expression ${i^{4n + 1}}$ as,
$ \Rightarrow {i^{4n + 1}} = {i^{4n}} \times i$
Use the exponent law,
$ \Rightarrow {i^{4n + 1}} = {\left( {{i^4}} \right)^n} \times i$
Substitute the value of ${i^4}$,
$ \Rightarrow {i^{4n + 1}} = {1^n} \times i$
As we know that any power of 1 returns 1.
$ \Rightarrow {i^{4n + 1}} = i$.................….. (1)
Now, we can simplify the expression ${i^{4n - 1}}$ as,
$ \Rightarrow {i^{4n + 1}} = {i^{4n}} \times {i^{ - 1}}$
Use the exponent law,
$ \Rightarrow {i^{4n - 1}} = \dfrac{{{{\left( {{i^4}} \right)}^n}}}{i}$
Substitute the value of ${i^4}$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{{{1^n}}}{i}$
As we know that any power of 1 returns 1.
$ \Rightarrow {i^{4n - 1}} = \dfrac{1}{i}$
Rationalize the term by multiplying numerator and denominator by $i$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{1}{i} \times \dfrac{i}{i}$
Multiply the terms,
$ \Rightarrow {i^{4n - 1}} = \dfrac{i}{{{i^2}}}$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{i}{{ - 1}}$
Simplify the terms,
$ \Rightarrow {i^{4n - 1}} = - i$..............….. (2)
Substitute the values from equation (1) and (2) in original expression,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{i - \left( { - i} \right)}}{2}$
Open the bracket and change the sign accordingly,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{i + i}}{2}$
Add the term in the numerator,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{2i}}{2}$
Cancel out the common factor,
$\therefore \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = i$
So, the value of $\dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2}$ is $i$.
Hence, the option (D) is the correct answer.
Note: The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
