
Find the value of $\dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2}$.
A) $–1$
B) $1$
C) $–i$
D) $i$
Answer
572.7k+ views
Hint: Use the fact that $i = \sqrt { - 1} $ is a square root of unity. Calculate higher powers of $i$ and simplify the given expression using the law of exponents. Then substitute the values of higher powers of $i$ and use laws of exponents to calculate the value of the given expression.
Complete step-by-step solution:
We have to calculate the value of $\dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2}$. We observe that an expression is a complex number.
We know that $i = \sqrt { - 1} $. We will now calculate higher powers of $i$.
Thus, we have
${i^2} = {\left( {\sqrt { - 1} } \right)^2}$
Square the term,
$ \Rightarrow {i^2} = - 1$
Now find the value of ${i^3}$,
$ \Rightarrow {i^3} = {i^2} \times i$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^3} = - i$
Now find the value of ${i^4}$,
$ \Rightarrow {i^4} = {\left( {{i^2}} \right)^2}$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^4} = {\left( { - 1} \right)^2}$
Square the term,
$ \Rightarrow {i^4} = 1$
The laws of exponents state that,
${a^b} \times {a^c} = {a^{b + c}}$
And,
${\left( {{a^b}} \right)^c} = {a^{bc}}$
So, we can simplify the expression ${i^{4n + 1}}$ as,
$ \Rightarrow {i^{4n + 1}} = {i^{4n}} \times i$
Use the exponent law,
$ \Rightarrow {i^{4n + 1}} = {\left( {{i^4}} \right)^n} \times i$
Substitute the value of ${i^4}$,
$ \Rightarrow {i^{4n + 1}} = {1^n} \times i$
As we know that any power of 1 returns 1.
$ \Rightarrow {i^{4n + 1}} = i$.................….. (1)
Now, we can simplify the expression ${i^{4n - 1}}$ as,
$ \Rightarrow {i^{4n + 1}} = {i^{4n}} \times {i^{ - 1}}$
Use the exponent law,
$ \Rightarrow {i^{4n - 1}} = \dfrac{{{{\left( {{i^4}} \right)}^n}}}{i}$
Substitute the value of ${i^4}$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{{{1^n}}}{i}$
As we know that any power of 1 returns 1.
$ \Rightarrow {i^{4n - 1}} = \dfrac{1}{i}$
Rationalize the term by multiplying numerator and denominator by $i$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{1}{i} \times \dfrac{i}{i}$
Multiply the terms,
$ \Rightarrow {i^{4n - 1}} = \dfrac{i}{{{i^2}}}$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{i}{{ - 1}}$
Simplify the terms,
$ \Rightarrow {i^{4n - 1}} = - i$..............….. (2)
Substitute the values from equation (1) and (2) in original expression,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{i - \left( { - i} \right)}}{2}$
Open the bracket and change the sign accordingly,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{i + i}}{2}$
Add the term in the numerator,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{2i}}{2}$
Cancel out the common factor,
$\therefore \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = i$
So, the value of $\dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2}$ is $i$.
Hence, the option (D) is the correct answer.
Note: The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
Complete step-by-step solution:
We have to calculate the value of $\dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2}$. We observe that an expression is a complex number.
We know that $i = \sqrt { - 1} $. We will now calculate higher powers of $i$.
Thus, we have
${i^2} = {\left( {\sqrt { - 1} } \right)^2}$
Square the term,
$ \Rightarrow {i^2} = - 1$
Now find the value of ${i^3}$,
$ \Rightarrow {i^3} = {i^2} \times i$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^3} = - i$
Now find the value of ${i^4}$,
$ \Rightarrow {i^4} = {\left( {{i^2}} \right)^2}$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^4} = {\left( { - 1} \right)^2}$
Square the term,
$ \Rightarrow {i^4} = 1$
The laws of exponents state that,
${a^b} \times {a^c} = {a^{b + c}}$
And,
${\left( {{a^b}} \right)^c} = {a^{bc}}$
So, we can simplify the expression ${i^{4n + 1}}$ as,
$ \Rightarrow {i^{4n + 1}} = {i^{4n}} \times i$
Use the exponent law,
$ \Rightarrow {i^{4n + 1}} = {\left( {{i^4}} \right)^n} \times i$
Substitute the value of ${i^4}$,
$ \Rightarrow {i^{4n + 1}} = {1^n} \times i$
As we know that any power of 1 returns 1.
$ \Rightarrow {i^{4n + 1}} = i$.................….. (1)
Now, we can simplify the expression ${i^{4n - 1}}$ as,
$ \Rightarrow {i^{4n + 1}} = {i^{4n}} \times {i^{ - 1}}$
Use the exponent law,
$ \Rightarrow {i^{4n - 1}} = \dfrac{{{{\left( {{i^4}} \right)}^n}}}{i}$
Substitute the value of ${i^4}$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{{{1^n}}}{i}$
As we know that any power of 1 returns 1.
$ \Rightarrow {i^{4n - 1}} = \dfrac{1}{i}$
Rationalize the term by multiplying numerator and denominator by $i$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{1}{i} \times \dfrac{i}{i}$
Multiply the terms,
$ \Rightarrow {i^{4n - 1}} = \dfrac{i}{{{i^2}}}$
Substitute the value of ${i^2}$,
$ \Rightarrow {i^{4n - 1}} = \dfrac{i}{{ - 1}}$
Simplify the terms,
$ \Rightarrow {i^{4n - 1}} = - i$..............….. (2)
Substitute the values from equation (1) and (2) in original expression,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{i - \left( { - i} \right)}}{2}$
Open the bracket and change the sign accordingly,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{i + i}}{2}$
Add the term in the numerator,
$ \Rightarrow \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = \dfrac{{2i}}{2}$
Cancel out the common factor,
$\therefore \dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2} = i$
So, the value of $\dfrac{{{i^{4n + 1}} - {i^{4n - 1}}}}{2}$ is $i$.
Hence, the option (D) is the correct answer.
Note: The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

