
Find the value of \[\dfrac{26-15\sqrt{3}}{{{\left[ 5\sqrt{2}-\sqrt{38+5\sqrt{3}} \right]}^{2}}}+\dfrac{\sqrt{10}+\sqrt{18}}{\sqrt{8}+\sqrt{\left( 3-\sqrt{5} \right)}}\]
(a) $\dfrac{1}{3}$
(b) $\dfrac{2}{3}$
(c) $\dfrac{3}{5}$
(d) $\dfrac{7}{3}$
Answer
575.4k+ views
Hint: Initially, we should try to simplify \[\sqrt{38+5\sqrt{3}}\] by expressing it in such a way that we can use the identity \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\] to get rid of square root sign. Similarly, \[\sqrt{3-\sqrt{5}}\] can be simplified by expressing it in such a way that we can use the identity \[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}\]and after that the fraction can be rationalised which will lead to final answer.
Complete step-by-step solution:
Let us first consider \[\sqrt{38+5\sqrt{3}}\] and multiplying $\sqrt{2}$ in numerator and denominator, we get
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{1}{\sqrt{2}}\sqrt{2\times (38+5\sqrt{3}}\]
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{\sqrt{76+10\sqrt{3}}}{\sqrt{2}}\]
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{\sqrt{75+1+2\times 1\times 5\sqrt{3}}}{\sqrt{2}}\]
We can put \[75\text{=}{{\left( 5\sqrt{3} \right)}^{2}}\] in the above equation
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{\sqrt{{{\left( 5\sqrt{3} \right)}^{2}}+{{1}^{2}}+2\times 1\times 5\sqrt{3}}}{\sqrt{2}}\text{ }\]
Applying \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\] , we get
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{\sqrt{{{\left( 5\sqrt{3}+1 \right)}^{2}}}}{\sqrt{2}}\]
We can neutralize square root by the square sign over the expression
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{5\sqrt{3}+1}{\sqrt{2}}\text{ }..............\text{ }(1)\]
Now, let us consider \[\sqrt{3-\sqrt{5}}\] and multiplying $\sqrt{2}$ in numerator and denominator, we get
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{2\times \left( 3-\sqrt{5} \right)}}{\sqrt{2}}\]
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\]
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{5+1-2\sqrt{5}}}{\sqrt{2}}\]
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{{{\left( \sqrt{5} \right)}^{2}}+{{1}^{2}}-2\sqrt{5}}}{\sqrt{2}}\]
Applying \[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}\] , we get
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{{{\left( \sqrt{5}-1 \right)}^{2}}}}{\sqrt{2}}\]
We can neutralize square root by the square sign over the expression
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{5}-1}{\sqrt{2}}\text{ }..............\text{ }(2)\]
Now substituting equation (1) and (2) in the question we get,
\[\Rightarrow \dfrac{26-15\sqrt{3}}{{{\left[ 5\sqrt{2}-\sqrt{38+5\sqrt{3}} \right]}^{2}}}+\dfrac{\sqrt{10}+\sqrt{18}}{\sqrt{8}+\sqrt{\left( 3-\sqrt{5} \right)}}=\dfrac{26-15\sqrt{3}}{{{\left[ 5\sqrt{2}-\dfrac{5\sqrt{3}+1}{\sqrt{2}} \right]}^{2}}}+\dfrac{\sqrt{10}+\sqrt{18}}{\sqrt{8}+\dfrac{\sqrt{5}-1}{\sqrt{2}}}\]
We can take $\sqrt{2}$ common from $\sqrt{10}$ and $\sqrt{18}$ in the second expression
\[=\dfrac{26-15\sqrt{3}}{{{\left[ \dfrac{9-5\sqrt{3}}{\sqrt{2}} \right]}^{2}}}+\dfrac{\sqrt{2}\left( \sqrt{5}+\sqrt{9} \right)}{\dfrac{3+\sqrt{5}}{\sqrt{2}}}\]
\[=\dfrac{2\left( 26-15\sqrt{3} \right)}{156-90\sqrt{3}}+\dfrac{2\left( \sqrt{5}+3 \right)}{3+\sqrt{5}}\]
\[=\dfrac{2\left( 26-15\sqrt{3} \right)}{6\left( 26-15\sqrt{3} \right)}+2\]
\[=\dfrac{1}{3}+2\]
\[=\dfrac{7}{3}\]
Therefore, the given expression can be simplified to \[\dfrac{7}{3}\]
Hence, the correct option is (d).
Note: Sometimes we need to multiply the expression with some number (like we multiplied the expression with $\sqrt{2}$ in this question) to achieve the form of \[{{a}^{2}}+{{b}^{2}}+2ab\] or \[{{a}^{2}}+{{b}^{2}}-2ab\] . Now you might think that why only $\sqrt{2}$ and not any other number is multiplied to achieve the desired form in this question, the logic behind it is that we first focused on getting \[2ab\] term and it cannot be achieved by multiplying the expression with any other number except $\sqrt{2}$. After making \[2ab\] term, we can easily write the remaining expression in the form of \[{{a}^{2}}+{{b}^{2}}\] , as we can easily predict \[a\] and \[b\] from the \[2ab\] term.
Complete step-by-step solution:
Let us first consider \[\sqrt{38+5\sqrt{3}}\] and multiplying $\sqrt{2}$ in numerator and denominator, we get
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{1}{\sqrt{2}}\sqrt{2\times (38+5\sqrt{3}}\]
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{\sqrt{76+10\sqrt{3}}}{\sqrt{2}}\]
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{\sqrt{75+1+2\times 1\times 5\sqrt{3}}}{\sqrt{2}}\]
We can put \[75\text{=}{{\left( 5\sqrt{3} \right)}^{2}}\] in the above equation
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{\sqrt{{{\left( 5\sqrt{3} \right)}^{2}}+{{1}^{2}}+2\times 1\times 5\sqrt{3}}}{\sqrt{2}}\text{ }\]
Applying \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\] , we get
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{\sqrt{{{\left( 5\sqrt{3}+1 \right)}^{2}}}}{\sqrt{2}}\]
We can neutralize square root by the square sign over the expression
\[\Rightarrow \sqrt{38+5\sqrt{3}}=\dfrac{5\sqrt{3}+1}{\sqrt{2}}\text{ }..............\text{ }(1)\]
Now, let us consider \[\sqrt{3-\sqrt{5}}\] and multiplying $\sqrt{2}$ in numerator and denominator, we get
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{2\times \left( 3-\sqrt{5} \right)}}{\sqrt{2}}\]
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\]
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{5+1-2\sqrt{5}}}{\sqrt{2}}\]
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{{{\left( \sqrt{5} \right)}^{2}}+{{1}^{2}}-2\sqrt{5}}}{\sqrt{2}}\]
Applying \[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}\] , we get
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{{{\left( \sqrt{5}-1 \right)}^{2}}}}{\sqrt{2}}\]
We can neutralize square root by the square sign over the expression
\[\Rightarrow \sqrt{3-\sqrt{5}}=\dfrac{\sqrt{5}-1}{\sqrt{2}}\text{ }..............\text{ }(2)\]
Now substituting equation (1) and (2) in the question we get,
\[\Rightarrow \dfrac{26-15\sqrt{3}}{{{\left[ 5\sqrt{2}-\sqrt{38+5\sqrt{3}} \right]}^{2}}}+\dfrac{\sqrt{10}+\sqrt{18}}{\sqrt{8}+\sqrt{\left( 3-\sqrt{5} \right)}}=\dfrac{26-15\sqrt{3}}{{{\left[ 5\sqrt{2}-\dfrac{5\sqrt{3}+1}{\sqrt{2}} \right]}^{2}}}+\dfrac{\sqrt{10}+\sqrt{18}}{\sqrt{8}+\dfrac{\sqrt{5}-1}{\sqrt{2}}}\]
We can take $\sqrt{2}$ common from $\sqrt{10}$ and $\sqrt{18}$ in the second expression
\[=\dfrac{26-15\sqrt{3}}{{{\left[ \dfrac{9-5\sqrt{3}}{\sqrt{2}} \right]}^{2}}}+\dfrac{\sqrt{2}\left( \sqrt{5}+\sqrt{9} \right)}{\dfrac{3+\sqrt{5}}{\sqrt{2}}}\]
\[=\dfrac{2\left( 26-15\sqrt{3} \right)}{156-90\sqrt{3}}+\dfrac{2\left( \sqrt{5}+3 \right)}{3+\sqrt{5}}\]
\[=\dfrac{2\left( 26-15\sqrt{3} \right)}{6\left( 26-15\sqrt{3} \right)}+2\]
\[=\dfrac{1}{3}+2\]
\[=\dfrac{7}{3}\]
Therefore, the given expression can be simplified to \[\dfrac{7}{3}\]
Hence, the correct option is (d).
Note: Sometimes we need to multiply the expression with some number (like we multiplied the expression with $\sqrt{2}$ in this question) to achieve the form of \[{{a}^{2}}+{{b}^{2}}+2ab\] or \[{{a}^{2}}+{{b}^{2}}-2ab\] . Now you might think that why only $\sqrt{2}$ and not any other number is multiplied to achieve the desired form in this question, the logic behind it is that we first focused on getting \[2ab\] term and it cannot be achieved by multiplying the expression with any other number except $\sqrt{2}$. After making \[2ab\] term, we can easily write the remaining expression in the form of \[{{a}^{2}}+{{b}^{2}}\] , as we can easily predict \[a\] and \[b\] from the \[2ab\] term.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

