
Find the value of \[\dfrac{1}{{3 \times 1}} + \dfrac{1}{{5 \times 7}} + \dfrac{1}{{11 \times 9}} + - - - - \] when \[1-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{11}=\dfrac{\pi }{4}\]
Answer
477.9k+ views
Hint: The general term will be \[\dfrac{1}{(2n-1)(2n+1)}=\dfrac{1}{2}\left[ \dfrac{(2n+1)-(2n-1)}{(2n-1)(2n+1)} \right]=\dfrac{1}{2}\left[ \dfrac{1}{2n-1}-\dfrac{1}{2n+1} \right]\]. We will be solving the given question following this approach of the general term. First convert the equation given in the question to that of the general term and calculate the final answer.
Complete step-by-step answer:
We have,
\[1-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{11}=\dfrac{\pi }{4}\]
can be written in general form in the following manner:
\[\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\]
Here, we have taken two terms, from the left side, at a time and the value of n starts with n=1.
Now, we need to evaluate
\[\dfrac{1}{{3 \times 1}} + \dfrac{1}{{5 \times 7}} + \dfrac{1}{{11 \times 9}} + - - - - = \]
which can also be written as:
\[\dfrac{1}{(2n-1)(2n+1)}\].
So, we will rearrange this in the following manner:
$
\dfrac{1}{{(2n - 1)(2n + 1)}} = \dfrac{1}{2}\left[ {\dfrac{{(2n + 1) - (2n - 1)}}{{(2n - 1)(2n + 1)}}} \right] = \dfrac{1}{2}\left[ {\dfrac{1}{{2n - 1}} - \dfrac{1}{{2n + 1}}} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\dfrac{{3 - 1}}{{3 \times 1}} + \dfrac{{7 - 5}}{{7 \times 5}} + \dfrac{{11 - 9}}{{11 \times 9}} + ..........} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {1 - \dfrac{1}{3} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{9} - \dfrac{1}{{11}} + ........} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\dfrac{\pi }{4}} \right] \\
\Rightarrow \dfrac{\pi }{8} \;
$
So, the correct answer is “$\dfrac{\pi }{8}$”.
Note: Whenever you have to find the sum of a series containing fractions where denominators can be expressed into two numbers, write the numerator as the difference of the numbers in the denominator and then separate one term into the difference of two in the following manner
\[\dfrac{{a - b}}{{a \times b}}\] = \[\dfrac{a}{a \times b}\] - \[\dfrac{b}{a \times b}\] = \[\dfrac{1}{b} - \dfrac{1}{a}\]
Complete step-by-step answer:
We have,
\[1-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{9}-\dfrac{1}{11}=\dfrac{\pi }{4}\]
can be written in general form in the following manner:
\[\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\]
Here, we have taken two terms, from the left side, at a time and the value of n starts with n=1.
Now, we need to evaluate
\[\dfrac{1}{{3 \times 1}} + \dfrac{1}{{5 \times 7}} + \dfrac{1}{{11 \times 9}} + - - - - = \]
which can also be written as:
\[\dfrac{1}{(2n-1)(2n+1)}\].
So, we will rearrange this in the following manner:
$
\dfrac{1}{{(2n - 1)(2n + 1)}} = \dfrac{1}{2}\left[ {\dfrac{{(2n + 1) - (2n - 1)}}{{(2n - 1)(2n + 1)}}} \right] = \dfrac{1}{2}\left[ {\dfrac{1}{{2n - 1}} - \dfrac{1}{{2n + 1}}} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\dfrac{{3 - 1}}{{3 \times 1}} + \dfrac{{7 - 5}}{{7 \times 5}} + \dfrac{{11 - 9}}{{11 \times 9}} + ..........} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {1 - \dfrac{1}{3} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{9} - \dfrac{1}{{11}} + ........} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\dfrac{\pi }{4}} \right] \\
\Rightarrow \dfrac{\pi }{8} \;
$
So, the correct answer is “$\dfrac{\pi }{8}$”.
Note: Whenever you have to find the sum of a series containing fractions where denominators can be expressed into two numbers, write the numerator as the difference of the numbers in the denominator and then separate one term into the difference of two in the following manner
\[\dfrac{{a - b}}{{a \times b}}\] = \[\dfrac{a}{a \times b}\] - \[\dfrac{b}{a \times b}\] = \[\dfrac{1}{b} - \dfrac{1}{a}\]
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

