
Find the value of definite integration $\int\limits_0^{\dfrac{\pi }{2}} {\sin x\cos xdx} $ .
Answer
615.3k+ views
Hint-In this question, we use the concept of definite integration and also use basic trigonometric identity. We use trigonometric identity $\sin 2x = 2\sin x\cos x$ and we also use \[\int\limits_a^b {\sin n\theta = \left[ {\dfrac{{ - \cos n\theta }}{n}} \right]_a^b} \] .
Complete step-by-step answer:
Let $I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\cos xdx} $
Now, multiply by 2 on both sides of the equation.
$ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {2\sin x\cos xdx} $
We use trigonometric identity $\sin 2x = 2\sin x\cos x$
$ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\sin 2xdx} $
As we know integration \[\int\limits_a^b {\sin n\theta = \left[ {\dfrac{{ - \cos n\theta }}{n}} \right]_a^b} \]
$
\Rightarrow 2I = \left[ {\dfrac{{ - \cos 2x}}{2}} \right]_0^{\dfrac{\pi }{2}} \\
\Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ {\cos 2x} \right]_0^{\dfrac{\pi }{2}} \\
$
$
\Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ {\cos 2 \times \dfrac{\pi }{2} - \cos 2 \times 0} \right] \\
\Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ {\cos \pi - \cos 0} \right] \\
$
We know the value of $\cos \pi = - 1{\text{ and }}\cos 0 = 1$
$
\Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ { - 1 - 1} \right] \\
\Rightarrow 2I = \dfrac{{ - 1}}{2} \times \left( { - 2} \right) \\
\Rightarrow I = \dfrac{1}{2} \\
$
So the value of integration $\int\limits_0^{\dfrac{\pi }{2}} {\sin x\cos xdx} $ is $\dfrac{1}{2}$ .
Note-In such types of questions we use some important points to solve problems in an easy way. First we convert the big expression into a small expression by using trigonometric identity as mentioned in above and then apply integration because we know the integration of standard trigonometric form (like integration of sinx is cosx). Then after putting the limit we will get the required answer.
Complete step-by-step answer:
Let $I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\cos xdx} $
Now, multiply by 2 on both sides of the equation.
$ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {2\sin x\cos xdx} $
We use trigonometric identity $\sin 2x = 2\sin x\cos x$
$ \Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\sin 2xdx} $
As we know integration \[\int\limits_a^b {\sin n\theta = \left[ {\dfrac{{ - \cos n\theta }}{n}} \right]_a^b} \]
$
\Rightarrow 2I = \left[ {\dfrac{{ - \cos 2x}}{2}} \right]_0^{\dfrac{\pi }{2}} \\
\Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ {\cos 2x} \right]_0^{\dfrac{\pi }{2}} \\
$
$
\Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ {\cos 2 \times \dfrac{\pi }{2} - \cos 2 \times 0} \right] \\
\Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ {\cos \pi - \cos 0} \right] \\
$
We know the value of $\cos \pi = - 1{\text{ and }}\cos 0 = 1$
$
\Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ { - 1 - 1} \right] \\
\Rightarrow 2I = \dfrac{{ - 1}}{2} \times \left( { - 2} \right) \\
\Rightarrow I = \dfrac{1}{2} \\
$
So the value of integration $\int\limits_0^{\dfrac{\pi }{2}} {\sin x\cos xdx} $ is $\dfrac{1}{2}$ .
Note-In such types of questions we use some important points to solve problems in an easy way. First we convert the big expression into a small expression by using trigonometric identity as mentioned in above and then apply integration because we know the integration of standard trigonometric form (like integration of sinx is cosx). Then after putting the limit we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

