
Find the value of \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \]
a. $\sin \left( {\dfrac{\theta }{2}} \right)$
b. $\dfrac{{\cos \left( {n + 1} \right)\theta }}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
c. $\dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
d. $\sin \left( {\dfrac{{n\theta }}{2}} \right).\cos \{ \left( {n + 1} \right)\theta \} $
Answer
494.4k+ views
Hint: First, we shall analyze the given information so that we are able to solve this problem. Here, we are given\[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \]and we are asked to calculate the value of\[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \].
We need to consider\[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \] this in terms of summation.
That is, \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta = \sum\limits_{k = 1}^n {cos(k\theta )} \]
Since we all know${e^{i\theta }} = \cos \theta + i\sin \theta $, we need to substitute it in the obtained equation.
Formula to be used:
a) The formula to calculate the sum of the geometric series is as follows.
$1 + x + {x^2} + .... + {x^n} = \dfrac{{{x^{n + 1}} - 1}}{{x - 1}}$ where$x \geqslant 1$
b) $\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}$
Complete step by step answer:
We know that${e^{i\theta }} = \cos \theta + i\sin \theta $
We are asked to calculate\[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \]
Thus, \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \]can be written in terms of summation as follows.
\[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta = \sum\limits_{k = 1}^n {cos(k\theta )} \]
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \sum\limits_{k = 1}^n {{e^{ik\theta }}} \] ($\cos \theta $is the real part of${e^{i\theta }}$)
$ = \operatorname{Re} \left( {{e^{i\theta }} + {e^{i2\theta }} + {e^{i3\theta }} + ..... + {e^{in\theta }}} \right)$ (We have expanded the above expression)
Now, we shall take ${e^{i\theta }}$as a common term.
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\left( {1 + {e^{i\theta }} + {e^{i2\theta }} + {e^{i3\theta }} + ..... + {e^{i\left( {n - 1} \right)\theta }}} \right)} \right)\]
\[ = \operatorname{Re} \left( {{e^{i\theta }}\left( {1 + {e^{i\theta }} + {e^{i2\theta }} + {e^{i3\theta }} + ..... + {e^{i\left( {n - 1} \right)\theta }}} \right)} \right)\]
Now, using the formula to calculate the sum of the geometric series$1 + x + {x^2} + .... + {x^n} = \dfrac{{{x^{n + 1}} - 1}}{{x - 1}}$, we get
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\left( {\dfrac{{{e^{in\theta }} - 1}}{{{e^{i\theta }} - 1}}} \right)} \right)\]
Here, we shall apply\[{e^{i\theta }} = {e^{\dfrac{{i\theta }}{2}}}.{e^{\dfrac{{i\theta }}{2}}}\] ,\[{e^{in\theta }} = {e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{in\theta }}{2}}}\] and\[1 = {e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{ - in\theta }}{2}}}\] in the above equation.
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\left( {\dfrac{{{e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{ - in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}.{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{i\theta }}{2}}}.{e^{\dfrac{{ - i\theta }}{2}}}}}} \right)} \right)\]
Now, we shall pick the common terms inside the brackets.
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\dfrac{{{e^{\dfrac{{in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}}}\left( {\dfrac{{{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{ - in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{ - i\theta }}{2}}}}}} \right)} \right)\] ……………..$\left( 1 \right)$
Here, \[{e^{i\theta }}\dfrac{{{e^{\dfrac{{in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}}} = {e^{i\theta }}{e^{\dfrac{{in\theta }}{2}}}{e^{\dfrac{{ - i\theta }}{2}}}\]
\[ = {e^{i\theta + \dfrac{{in\theta }}{2}\dfrac{{ - i\theta }}{2}}}\]
\[ = {e^{i\left( {\theta + \dfrac{{n\theta }}{2}\dfrac{{ - \theta }}{2}} \right)}}\]
\[ = {e^{i\left( {\dfrac{{2\theta + n\theta - \theta }}{2}} \right)}}\]
\[ = {e^{i\theta \left( {\dfrac{{n + 1}}{2}} \right)}}\]
We need to substitute \[{e^{i\theta }}\dfrac{{{e^{\dfrac{{in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}}} = {e^{i\left( {n + 1} \right)\dfrac{\theta }{2}}}\] in the equation$\left( 1 \right)$.
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\left( {n + 1} \right)\dfrac{\theta }{2}}}\left( {\dfrac{{{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{ - in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{ - i\theta }}{2}}}}}} \right)} \right)\] ……….$\left( 2 \right)$
Using the formula$\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}$, we have${e^{i\theta }} - {e^{ - i\theta }} = 2i\sin \theta $
Similarly, \[{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{ - in\theta }}{2}}} = 2i\sin \dfrac{{n\theta }}{2}\] and\[{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{ - i\theta }}{2}}} = 2i\sin \dfrac{\theta }{2}\] .
We shall substitute the above results in the equation$\left( 2 \right)$
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\left( {n + 1} \right)\dfrac{\theta }{2}}}\left( {\dfrac{{2i\sin \dfrac{{n\theta }}{2}}}{{2i\sin \dfrac{\theta }{2}}}} \right)} \right)\]
Since${e^{i\theta }} = \cos \theta + i\sin \theta $we have
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {\cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right) + \sin \left( {i\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)} \right)\]
\[ \Rightarrow \sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {\cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right) + i\sin \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)} \right)\]
\[ \Rightarrow \sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {\cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right) + i\sin \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)} \right)\]
Now, we need to consider the real part alone.
\[ \Rightarrow \sum\limits_{k = 1}^n {cos(k\theta )} = \cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)\]
$ = \dfrac{{\cos \left( {\dfrac{{n\theta + \theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
$ = \dfrac{{\cos \left( {\dfrac{{2\theta + n\theta - \theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
$ = \dfrac{{\cos \left( {\dfrac{{2\theta }}{2} + \dfrac{{n\theta - \theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
$ = \dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
Therefore, \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \]$ = \dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
So, the correct answer is “Option c”.
Note: We know that${e^{i\theta }} = \cos \theta + i\sin \theta $. Generally, a complex number consists of a real part and an imaginary part. For example, let us consider a complex number$z = 5 + 7i$. In this example, the real part of$z$ is$5$and the imaginary part of$z$ is$7$.
Similarly, for${e^{i\theta }} = \cos \theta + i\sin \theta $, the real part of${e^{i\theta }}$ is$\cos \theta $ and the imaginary part of${e^{i\theta }}$ is$\sin \theta $
Therefore, \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \]$ = \dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
We need to consider\[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \] this in terms of summation.
That is, \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta = \sum\limits_{k = 1}^n {cos(k\theta )} \]
Since we all know${e^{i\theta }} = \cos \theta + i\sin \theta $, we need to substitute it in the obtained equation.
Formula to be used:
a) The formula to calculate the sum of the geometric series is as follows.
$1 + x + {x^2} + .... + {x^n} = \dfrac{{{x^{n + 1}} - 1}}{{x - 1}}$ where$x \geqslant 1$
b) $\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}$
Complete step by step answer:
We know that${e^{i\theta }} = \cos \theta + i\sin \theta $
We are asked to calculate\[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \]
Thus, \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \]can be written in terms of summation as follows.
\[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta = \sum\limits_{k = 1}^n {cos(k\theta )} \]
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \sum\limits_{k = 1}^n {{e^{ik\theta }}} \] ($\cos \theta $is the real part of${e^{i\theta }}$)
$ = \operatorname{Re} \left( {{e^{i\theta }} + {e^{i2\theta }} + {e^{i3\theta }} + ..... + {e^{in\theta }}} \right)$ (We have expanded the above expression)
Now, we shall take ${e^{i\theta }}$as a common term.
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\left( {1 + {e^{i\theta }} + {e^{i2\theta }} + {e^{i3\theta }} + ..... + {e^{i\left( {n - 1} \right)\theta }}} \right)} \right)\]
\[ = \operatorname{Re} \left( {{e^{i\theta }}\left( {1 + {e^{i\theta }} + {e^{i2\theta }} + {e^{i3\theta }} + ..... + {e^{i\left( {n - 1} \right)\theta }}} \right)} \right)\]
Now, using the formula to calculate the sum of the geometric series$1 + x + {x^2} + .... + {x^n} = \dfrac{{{x^{n + 1}} - 1}}{{x - 1}}$, we get
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\left( {\dfrac{{{e^{in\theta }} - 1}}{{{e^{i\theta }} - 1}}} \right)} \right)\]
Here, we shall apply\[{e^{i\theta }} = {e^{\dfrac{{i\theta }}{2}}}.{e^{\dfrac{{i\theta }}{2}}}\] ,\[{e^{in\theta }} = {e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{in\theta }}{2}}}\] and\[1 = {e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{ - in\theta }}{2}}}\] in the above equation.
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\left( {\dfrac{{{e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{ - in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}.{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{i\theta }}{2}}}.{e^{\dfrac{{ - i\theta }}{2}}}}}} \right)} \right)\]
Now, we shall pick the common terms inside the brackets.
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\dfrac{{{e^{\dfrac{{in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}}}\left( {\dfrac{{{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{ - in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{ - i\theta }}{2}}}}}} \right)} \right)\] ……………..$\left( 1 \right)$
Here, \[{e^{i\theta }}\dfrac{{{e^{\dfrac{{in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}}} = {e^{i\theta }}{e^{\dfrac{{in\theta }}{2}}}{e^{\dfrac{{ - i\theta }}{2}}}\]
\[ = {e^{i\theta + \dfrac{{in\theta }}{2}\dfrac{{ - i\theta }}{2}}}\]
\[ = {e^{i\left( {\theta + \dfrac{{n\theta }}{2}\dfrac{{ - \theta }}{2}} \right)}}\]
\[ = {e^{i\left( {\dfrac{{2\theta + n\theta - \theta }}{2}} \right)}}\]
\[ = {e^{i\theta \left( {\dfrac{{n + 1}}{2}} \right)}}\]
We need to substitute \[{e^{i\theta }}\dfrac{{{e^{\dfrac{{in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}}} = {e^{i\left( {n + 1} \right)\dfrac{\theta }{2}}}\] in the equation$\left( 1 \right)$.
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\left( {n + 1} \right)\dfrac{\theta }{2}}}\left( {\dfrac{{{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{ - in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{ - i\theta }}{2}}}}}} \right)} \right)\] ……….$\left( 2 \right)$
Using the formula$\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}$, we have${e^{i\theta }} - {e^{ - i\theta }} = 2i\sin \theta $
Similarly, \[{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{ - in\theta }}{2}}} = 2i\sin \dfrac{{n\theta }}{2}\] and\[{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{ - i\theta }}{2}}} = 2i\sin \dfrac{\theta }{2}\] .
We shall substitute the above results in the equation$\left( 2 \right)$
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\left( {n + 1} \right)\dfrac{\theta }{2}}}\left( {\dfrac{{2i\sin \dfrac{{n\theta }}{2}}}{{2i\sin \dfrac{\theta }{2}}}} \right)} \right)\]
Since${e^{i\theta }} = \cos \theta + i\sin \theta $we have
\[\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {\cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right) + \sin \left( {i\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)} \right)\]
\[ \Rightarrow \sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {\cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right) + i\sin \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)} \right)\]
\[ \Rightarrow \sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {\cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right) + i\sin \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)} \right)\]
Now, we need to consider the real part alone.
\[ \Rightarrow \sum\limits_{k = 1}^n {cos(k\theta )} = \cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)\]
$ = \dfrac{{\cos \left( {\dfrac{{n\theta + \theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
$ = \dfrac{{\cos \left( {\dfrac{{2\theta + n\theta - \theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
$ = \dfrac{{\cos \left( {\dfrac{{2\theta }}{2} + \dfrac{{n\theta - \theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
$ = \dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
Therefore, \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \]$ = \dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
So, the correct answer is “Option c”.
Note: We know that${e^{i\theta }} = \cos \theta + i\sin \theta $. Generally, a complex number consists of a real part and an imaginary part. For example, let us consider a complex number$z = 5 + 7i$. In this example, the real part of$z$ is$5$and the imaginary part of$z$ is$7$.
Similarly, for${e^{i\theta }} = \cos \theta + i\sin \theta $, the real part of${e^{i\theta }}$ is$\cos \theta $ and the imaginary part of${e^{i\theta }}$ is$\sin \theta $
Therefore, \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta \]$ = \dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}$
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

