
Find the value of $\cos \left( {{{\tan }^{ - 1}}\tan 4} \right)$.
A) $\dfrac{1}{{\sqrt {17} }}$
B) $ - \dfrac{1}{{\sqrt {17} }}$
C) $\cos 4$
D) $ - \cos 4$
Answer
581.1k+ views
Hint:
Use the property of $\tan \theta $ to convert the radian angle, $\tan 4$ into degrees and also use allied angles to write the angle within the range of $\tan \theta $. Once the angle is converted use inverse trigonometric property for ${\tan ^{ - 1}}\left( {\tan \theta } \right)$ and simplify.
Complete step by step solution:
We know that the property of tan inverse of tan function is ${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $ , where $\theta $ should lie in the interval $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$.
Since, the value of $4$ is greater than $\dfrac{\pi }{2}$, rewrite the angle $\tan 4$ using the allied angles of trigonometry to restrict the value within the range of $\tan \theta $.
\[ \Rightarrow \tan 4 = - \tan \left( {\pi - 4} \right)\]
As we know that $\tan \left( { - \theta } \right) = - \tan \theta $, then
$ \Rightarrow \tan 4 = \tan \left( {4 - \pi } \right)$
Now, As the angle $\tan 4$ is converted into tangent angle less than $\dfrac{\pi }{2}$, substitute $\tan 4 = \tan \left( {4 - \pi } \right)$ in the given expression.
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}\tan 4} \right) = \cos \left( {{{\tan }^{ - 1}}\tan \left( {4 - \pi } \right)} \right)$
Use the property of inverse, then the above expression will be simplified as below.
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}\tan 4} \right) = \cos \left( {4 - \pi } \right)$
Use the condition for cosine function $\cos \left( { - \theta } \right) = \cos \theta $ and rewrite the above cosine angle as,
$ \Rightarrow \cos \left( {4 - \pi } \right) = \cos \left[ { - \left( {\pi - 4} \right)} \right]$
$ \Rightarrow \cos \left( {4 - \pi } \right) = \cos \left( {\pi - 4} \right)$
So, the expression becomes,
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}\tan 4} \right) = \cos \left( {\pi - 4} \right)$
We know that the allied angle formula for cosine angle of trigonometry is $\cos \left( {\pi - \theta } \right) = - \cos \theta $.
Now, use the above formula to solve the given trigonometric expression.
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}\tan 4} \right) = - \cos 4$
Therefore, the option (D) is correct.
Note:
In these types of questions, first convert the given angle in radian into degrees.
Check if the given angle is within the range of the given trigonometric ratio, if the given radian angle has value in degrees greater than the range, use allied angles to get the angle within the range.
Make sure signs are taken very carefully while converting the angles to some other allied angles, if it's not done properly, it may lead to the incorrect answer.
Use the property of $\tan \theta $ to convert the radian angle, $\tan 4$ into degrees and also use allied angles to write the angle within the range of $\tan \theta $. Once the angle is converted use inverse trigonometric property for ${\tan ^{ - 1}}\left( {\tan \theta } \right)$ and simplify.
Complete step by step solution:
We know that the property of tan inverse of tan function is ${\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta $ , where $\theta $ should lie in the interval $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$.
Since, the value of $4$ is greater than $\dfrac{\pi }{2}$, rewrite the angle $\tan 4$ using the allied angles of trigonometry to restrict the value within the range of $\tan \theta $.
\[ \Rightarrow \tan 4 = - \tan \left( {\pi - 4} \right)\]
As we know that $\tan \left( { - \theta } \right) = - \tan \theta $, then
$ \Rightarrow \tan 4 = \tan \left( {4 - \pi } \right)$
Now, As the angle $\tan 4$ is converted into tangent angle less than $\dfrac{\pi }{2}$, substitute $\tan 4 = \tan \left( {4 - \pi } \right)$ in the given expression.
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}\tan 4} \right) = \cos \left( {{{\tan }^{ - 1}}\tan \left( {4 - \pi } \right)} \right)$
Use the property of inverse, then the above expression will be simplified as below.
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}\tan 4} \right) = \cos \left( {4 - \pi } \right)$
Use the condition for cosine function $\cos \left( { - \theta } \right) = \cos \theta $ and rewrite the above cosine angle as,
$ \Rightarrow \cos \left( {4 - \pi } \right) = \cos \left[ { - \left( {\pi - 4} \right)} \right]$
$ \Rightarrow \cos \left( {4 - \pi } \right) = \cos \left( {\pi - 4} \right)$
So, the expression becomes,
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}\tan 4} \right) = \cos \left( {\pi - 4} \right)$
We know that the allied angle formula for cosine angle of trigonometry is $\cos \left( {\pi - \theta } \right) = - \cos \theta $.
Now, use the above formula to solve the given trigonometric expression.
$ \Rightarrow \cos \left( {{{\tan }^{ - 1}}\tan 4} \right) = - \cos 4$
Therefore, the option (D) is correct.
Note:
In these types of questions, first convert the given angle in radian into degrees.
Check if the given angle is within the range of the given trigonometric ratio, if the given radian angle has value in degrees greater than the range, use allied angles to get the angle within the range.
Make sure signs are taken very carefully while converting the angles to some other allied angles, if it's not done properly, it may lead to the incorrect answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

