
Find the value of $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$.
Answer
517.5k+ views
Hint: Here, $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$ is of the form $\cos A\cos B+\sin A\sin B$ where $A={{60}^{\circ }}$ and $B={{30}^{\circ }}$. This is the expansion of $\cos (A-B)$ where $A-B={{60}^{\circ }}-{{30}^{\circ }}$. We also have to apply the trigonometric formulas:
$\cos ({{90}^{\circ }}-A)=\sin A$
$\sin ({{90}^{\circ }}-A)=\cos A$
$\sin 2A=2\sin A\cos A$
Complete step-by-step answer:
Here, we have to find the value of:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$
Hence, the above equation is of the form $\cos A\cos B+\sin A\sin B$, which is the expansion of $\cos (A-B)$. i.e. we have the formula:
$\cos (A-B)=\cos A\cos B+\sin A\sin B$
Since, we have$A={{60}^{\circ }}$ and $B={{30}^{\circ }}$. We can apply the above formula where:
$\cos (A-B)=\cos ({{60}^{\circ }}-{{30}^{\circ }})$
That is, we obtain the equation:
$\begin{align}
& \cos ({{60}^{\circ }}-{{30}^{\circ }})=\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }} \\
& \cos {{30}^{\circ }}=\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }} \\
\end{align}$
We know that the value of $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$.
Therefore, we will get:
$\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
Hence we can say that the value will be:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
OR
Here, there is another method to find the solution, i.e. by directly substituting the values for $\begin{align}
& \cos {{60}^{\circ }}=\dfrac{1}{2} \\
& \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \sin {{30}^{\circ }}=\dfrac{1}{2} \\
\end{align}$
Hence by substituting all these values in $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}$
Next by simplification we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{4}+\dfrac{\sqrt{3}}{4}$
Now, by taking the LCM we get:
$\begin{align}
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}+\sqrt{3}}{4} \\
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{2\sqrt{3}}{4} \\
\end{align}$
By cancellation, we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
OR
We can also solve this problem by using the formulas:
$\begin{align}
& \sin ({{90}^{\circ }}-A)=\cos A \\
& \cos ({{90}^{\circ }}-A)=\sin A \\
\end{align}$
i.e. we can write:
$\begin{align}
& \cos {{30}^{\circ }}=\sin ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \cos {{30}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (1)} \\
\end{align}$
Similarly, we will get:
$\begin{align}
& \sin {{30}^{\circ }}=\cos ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\text{ }.....\text{ (2)} \\
\end{align}$
By applying equation (1) and equation (2) in $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$we get:
$\begin{align}
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\sin {{60}^{\circ }}+\sin {{60}^{\circ }}\cos {{60}^{\circ }} \\
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=2\cos {{60}^{\circ }}\sin {{60}^{\circ }}\text{ }.....\text{ (3)} \\
\end{align}$
We know the formula that:
$\sin 2A=2\sin A\cos A$
That is, we will get:
$\begin{align}
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin 2\times {{60}^{\circ }} \\
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin {{120}^{\circ }} \\
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right) \\
\end{align}$
We, also know that $\sin \left( {{180}^{\circ }}-A \right)=\sin A$. i.e.
$\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=\sin {{60}^{\circ }}$
Therefore, we will get:
$2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (4)}$
By substituting equation (4) in equation (3) we obtain:
By substituting this formula above we obtain:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\sin {{60}^{\circ }}$
We know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$, therefore we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
Note: We can find the value of $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$ by using any one of the above methods. If we know the basic sine and cosine values, then directly by substituting the values we will get the answer easily.
$\cos ({{90}^{\circ }}-A)=\sin A$
$\sin ({{90}^{\circ }}-A)=\cos A$
$\sin 2A=2\sin A\cos A$
Complete step-by-step answer:
Here, we have to find the value of:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$
Hence, the above equation is of the form $\cos A\cos B+\sin A\sin B$, which is the expansion of $\cos (A-B)$. i.e. we have the formula:
$\cos (A-B)=\cos A\cos B+\sin A\sin B$
Since, we have$A={{60}^{\circ }}$ and $B={{30}^{\circ }}$. We can apply the above formula where:
$\cos (A-B)=\cos ({{60}^{\circ }}-{{30}^{\circ }})$
That is, we obtain the equation:
$\begin{align}
& \cos ({{60}^{\circ }}-{{30}^{\circ }})=\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }} \\
& \cos {{30}^{\circ }}=\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }} \\
\end{align}$
We know that the value of $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$.
Therefore, we will get:
$\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
Hence we can say that the value will be:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
OR
Here, there is another method to find the solution, i.e. by directly substituting the values for $\begin{align}
& \cos {{60}^{\circ }}=\dfrac{1}{2} \\
& \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \sin {{30}^{\circ }}=\dfrac{1}{2} \\
\end{align}$
Hence by substituting all these values in $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}$
Next by simplification we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{4}+\dfrac{\sqrt{3}}{4}$
Now, by taking the LCM we get:
$\begin{align}
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}+\sqrt{3}}{4} \\
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{2\sqrt{3}}{4} \\
\end{align}$
By cancellation, we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
OR
We can also solve this problem by using the formulas:
$\begin{align}
& \sin ({{90}^{\circ }}-A)=\cos A \\
& \cos ({{90}^{\circ }}-A)=\sin A \\
\end{align}$
i.e. we can write:
$\begin{align}
& \cos {{30}^{\circ }}=\sin ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \cos {{30}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (1)} \\
\end{align}$
Similarly, we will get:
$\begin{align}
& \sin {{30}^{\circ }}=\cos ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\text{ }.....\text{ (2)} \\
\end{align}$
By applying equation (1) and equation (2) in $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$we get:
$\begin{align}
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\sin {{60}^{\circ }}+\sin {{60}^{\circ }}\cos {{60}^{\circ }} \\
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=2\cos {{60}^{\circ }}\sin {{60}^{\circ }}\text{ }.....\text{ (3)} \\
\end{align}$
We know the formula that:
$\sin 2A=2\sin A\cos A$
That is, we will get:
$\begin{align}
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin 2\times {{60}^{\circ }} \\
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin {{120}^{\circ }} \\
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right) \\
\end{align}$
We, also know that $\sin \left( {{180}^{\circ }}-A \right)=\sin A$. i.e.
$\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=\sin {{60}^{\circ }}$
Therefore, we will get:
$2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (4)}$
By substituting equation (4) in equation (3) we obtain:
By substituting this formula above we obtain:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\sin {{60}^{\circ }}$
We know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$, therefore we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
Note: We can find the value of $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$ by using any one of the above methods. If we know the basic sine and cosine values, then directly by substituting the values we will get the answer easily.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
What is the modal class for the following table given class 11 maths CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE

Number of oneone functions from A to B where nA 4 and class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE
