
Find the value of $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$.
Answer
603.9k+ views
Hint: Here, $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$ is of the form $\cos A\cos B+\sin A\sin B$ where $A={{60}^{\circ }}$ and $B={{30}^{\circ }}$. This is the expansion of $\cos (A-B)$ where $A-B={{60}^{\circ }}-{{30}^{\circ }}$. We also have to apply the trigonometric formulas:
$\cos ({{90}^{\circ }}-A)=\sin A$
$\sin ({{90}^{\circ }}-A)=\cos A$
$\sin 2A=2\sin A\cos A$
Complete step-by-step answer:
Here, we have to find the value of:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$
Hence, the above equation is of the form $\cos A\cos B+\sin A\sin B$, which is the expansion of $\cos (A-B)$. i.e. we have the formula:
$\cos (A-B)=\cos A\cos B+\sin A\sin B$
Since, we have$A={{60}^{\circ }}$ and $B={{30}^{\circ }}$. We can apply the above formula where:
$\cos (A-B)=\cos ({{60}^{\circ }}-{{30}^{\circ }})$
That is, we obtain the equation:
$\begin{align}
& \cos ({{60}^{\circ }}-{{30}^{\circ }})=\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }} \\
& \cos {{30}^{\circ }}=\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }} \\
\end{align}$
We know that the value of $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$.
Therefore, we will get:
$\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
Hence we can say that the value will be:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
OR
Here, there is another method to find the solution, i.e. by directly substituting the values for $\begin{align}
& \cos {{60}^{\circ }}=\dfrac{1}{2} \\
& \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \sin {{30}^{\circ }}=\dfrac{1}{2} \\
\end{align}$
Hence by substituting all these values in $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}$
Next by simplification we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{4}+\dfrac{\sqrt{3}}{4}$
Now, by taking the LCM we get:
$\begin{align}
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}+\sqrt{3}}{4} \\
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{2\sqrt{3}}{4} \\
\end{align}$
By cancellation, we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
OR
We can also solve this problem by using the formulas:
$\begin{align}
& \sin ({{90}^{\circ }}-A)=\cos A \\
& \cos ({{90}^{\circ }}-A)=\sin A \\
\end{align}$
i.e. we can write:
$\begin{align}
& \cos {{30}^{\circ }}=\sin ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \cos {{30}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (1)} \\
\end{align}$
Similarly, we will get:
$\begin{align}
& \sin {{30}^{\circ }}=\cos ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\text{ }.....\text{ (2)} \\
\end{align}$
By applying equation (1) and equation (2) in $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$we get:
$\begin{align}
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\sin {{60}^{\circ }}+\sin {{60}^{\circ }}\cos {{60}^{\circ }} \\
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=2\cos {{60}^{\circ }}\sin {{60}^{\circ }}\text{ }.....\text{ (3)} \\
\end{align}$
We know the formula that:
$\sin 2A=2\sin A\cos A$
That is, we will get:
$\begin{align}
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin 2\times {{60}^{\circ }} \\
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin {{120}^{\circ }} \\
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right) \\
\end{align}$
We, also know that $\sin \left( {{180}^{\circ }}-A \right)=\sin A$. i.e.
$\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=\sin {{60}^{\circ }}$
Therefore, we will get:
$2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (4)}$
By substituting equation (4) in equation (3) we obtain:
By substituting this formula above we obtain:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\sin {{60}^{\circ }}$
We know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$, therefore we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
Note: We can find the value of $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$ by using any one of the above methods. If we know the basic sine and cosine values, then directly by substituting the values we will get the answer easily.
$\cos ({{90}^{\circ }}-A)=\sin A$
$\sin ({{90}^{\circ }}-A)=\cos A$
$\sin 2A=2\sin A\cos A$
Complete step-by-step answer:
Here, we have to find the value of:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$
Hence, the above equation is of the form $\cos A\cos B+\sin A\sin B$, which is the expansion of $\cos (A-B)$. i.e. we have the formula:
$\cos (A-B)=\cos A\cos B+\sin A\sin B$
Since, we have$A={{60}^{\circ }}$ and $B={{30}^{\circ }}$. We can apply the above formula where:
$\cos (A-B)=\cos ({{60}^{\circ }}-{{30}^{\circ }})$
That is, we obtain the equation:
$\begin{align}
& \cos ({{60}^{\circ }}-{{30}^{\circ }})=\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }} \\
& \cos {{30}^{\circ }}=\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }} \\
\end{align}$
We know that the value of $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$.
Therefore, we will get:
$\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
Hence we can say that the value will be:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
OR
Here, there is another method to find the solution, i.e. by directly substituting the values for $\begin{align}
& \cos {{60}^{\circ }}=\dfrac{1}{2} \\
& \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \sin {{30}^{\circ }}=\dfrac{1}{2} \\
\end{align}$
Hence by substituting all these values in $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}$
Next by simplification we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{4}+\dfrac{\sqrt{3}}{4}$
Now, by taking the LCM we get:
$\begin{align}
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}+\sqrt{3}}{4} \\
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{2\sqrt{3}}{4} \\
\end{align}$
By cancellation, we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
OR
We can also solve this problem by using the formulas:
$\begin{align}
& \sin ({{90}^{\circ }}-A)=\cos A \\
& \cos ({{90}^{\circ }}-A)=\sin A \\
\end{align}$
i.e. we can write:
$\begin{align}
& \cos {{30}^{\circ }}=\sin ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \cos {{30}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (1)} \\
\end{align}$
Similarly, we will get:
$\begin{align}
& \sin {{30}^{\circ }}=\cos ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\text{ }.....\text{ (2)} \\
\end{align}$
By applying equation (1) and equation (2) in $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$we get:
$\begin{align}
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\sin {{60}^{\circ }}+\sin {{60}^{\circ }}\cos {{60}^{\circ }} \\
& \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=2\cos {{60}^{\circ }}\sin {{60}^{\circ }}\text{ }.....\text{ (3)} \\
\end{align}$
We know the formula that:
$\sin 2A=2\sin A\cos A$
That is, we will get:
$\begin{align}
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin 2\times {{60}^{\circ }} \\
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin {{120}^{\circ }} \\
& 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right) \\
\end{align}$
We, also know that $\sin \left( {{180}^{\circ }}-A \right)=\sin A$. i.e.
$\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=\sin {{60}^{\circ }}$
Therefore, we will get:
$2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (4)}$
By substituting equation (4) in equation (3) we obtain:
By substituting this formula above we obtain:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\sin {{60}^{\circ }}$
We know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$, therefore we get:
$\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$
Note: We can find the value of $\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}$ by using any one of the above methods. If we know the basic sine and cosine values, then directly by substituting the values we will get the answer easily.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

