
Find the value of ${{\cos }^{3}}\theta +{{\cos }^{3}}\left( {{120}^{\circ }}+\theta \right)+{{\cos }^{3}}\left( {{120}^{\circ }}-\theta \right)$
A) $ \dfrac{3}{4}\sin 3\theta $
B) $ \dfrac{3}{4}\cos 3\theta $
C) $ \dfrac{3}{4}\tan 3\theta $
D) $ \dfrac{3}{4}\cot 3\theta $
Answer
567.9k+ views
Hint:
We have to solve the given trigonometric expression. For that, we will use the trigonometric identities for each term of the expression and then we will simplify the terms one by one and then add and subtract the like terms to get the simplified and final value of the given trigonometric expression.
Complete step by step solution:
We have
${{\cos }^{3}}\theta +{{\cos }^{3}}\left( {{120}^{\circ }}+\theta \right)+{{\cos }^{3}}\left( {{120}^{\circ }}-\theta \right)$ ………. $\left( 1 \right)$
We know the trigonometric identity that
$\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $
We can write this identity as
${{\cos }^{3}}\theta =\dfrac{\cos 3\theta +3\cos \theta }{4}$
Now, we will use this identity for all three terms in equation 1.
$=\dfrac{\cos 3\theta +3\cos \theta }{4}+\dfrac{\cos 3\left( {{120}^{\circ }}+\theta \right)+3\cos \left( {{120}^{\circ }}+\theta \right)}{4}+\dfrac{\cos 3\left( {{120}^{\circ }}-\theta \right)+3\cos \left( {{120}^{\circ }}-\theta \right)}{4}$
On simplifying the terms, we get
$=\dfrac{\cos 3\theta +3\cos \theta }{4}+\dfrac{\cos \left( {{360}^{\circ }}+3\theta \right)+3\cos \left( {{120}^{\circ }}+\theta \right)}{4}+\dfrac{\cos \left( {{360}^{\circ }}-3\theta \right)+3\cos \left( {{120}^{\circ }}-\theta \right)}{4}$
Taking $\dfrac{1}{4}$ common from all the terms, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos \left( {{360}^{\circ }}+3\theta \right)+3\cos \left( {{120}^{\circ }}+\theta \right)+\cos \left( {{360}^{\circ }}-3\theta \right)+3\cos \left( {{120}^{\circ }}-\theta \right) \right]$
Using periodic identities for the terms, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +3\cos \left( {{120}^{\circ }}+\theta \right)+\cos 3\theta +3\cos \left( {{120}^{\circ }}-\theta \right) \right]$
We know from the sum to product formulas of trigonometry that
\[\cos A+\cos B\text{ }=2\cos \frac{A+B}{2}.~\cos \frac{A-B}{2}~\].
We will use the trigonometric formula for the terms $\cos \left( {{120}^{\circ }}-\theta \right)$ and $\cos \left( {{120}^{\circ }}+\theta \right)$.
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta +3\times 2\times \cos \left( \dfrac{{{120}^{\circ }}+\theta +{{120}^{\circ }}-\theta }{2} \right)\times \cos \left( \dfrac{{{120}^{\circ }}+\theta -{{120}^{\circ }}+\theta }{2} \right) \right]$
On simplifying the terms inside the brackets, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta +3\cos {{120}^{\circ }}\times \cos \theta \right]$ ……… $\left( 2 \right)$
We know the value of $\cos {{120}^{\circ }}$ is $-\dfrac{1}{2}$ .
Therefore, substituting the values in equation 2, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta +3\times 2\times -\dfrac{1}{2}\times \cos \theta \right]$
On further simplification, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta -3\cos \theta \right]$
Adding and subtracting the like terms inside the bracket, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +\cos 3\theta +\cos 3\theta \right]$
Adding the terms inside the bracket, we get
$=\dfrac{3}{4}\cos 3\theta $
Thus, the correct option is option B.
Note:
We need to know the meaning of the trigonometric identities as we have used the trigonometric identities in this question. Trigonometric identities are defined as the equalities which involve the trigonometric functions and they are true for every value of the occurring variables for which both sides of the equality are defined. Remember that all the trigonometric identities are periodic in nature. They repeat their values after a certain interval.
We have to solve the given trigonometric expression. For that, we will use the trigonometric identities for each term of the expression and then we will simplify the terms one by one and then add and subtract the like terms to get the simplified and final value of the given trigonometric expression.
Complete step by step solution:
We have
${{\cos }^{3}}\theta +{{\cos }^{3}}\left( {{120}^{\circ }}+\theta \right)+{{\cos }^{3}}\left( {{120}^{\circ }}-\theta \right)$ ………. $\left( 1 \right)$
We know the trigonometric identity that
$\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $
We can write this identity as
${{\cos }^{3}}\theta =\dfrac{\cos 3\theta +3\cos \theta }{4}$
Now, we will use this identity for all three terms in equation 1.
$=\dfrac{\cos 3\theta +3\cos \theta }{4}+\dfrac{\cos 3\left( {{120}^{\circ }}+\theta \right)+3\cos \left( {{120}^{\circ }}+\theta \right)}{4}+\dfrac{\cos 3\left( {{120}^{\circ }}-\theta \right)+3\cos \left( {{120}^{\circ }}-\theta \right)}{4}$
On simplifying the terms, we get
$=\dfrac{\cos 3\theta +3\cos \theta }{4}+\dfrac{\cos \left( {{360}^{\circ }}+3\theta \right)+3\cos \left( {{120}^{\circ }}+\theta \right)}{4}+\dfrac{\cos \left( {{360}^{\circ }}-3\theta \right)+3\cos \left( {{120}^{\circ }}-\theta \right)}{4}$
Taking $\dfrac{1}{4}$ common from all the terms, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos \left( {{360}^{\circ }}+3\theta \right)+3\cos \left( {{120}^{\circ }}+\theta \right)+\cos \left( {{360}^{\circ }}-3\theta \right)+3\cos \left( {{120}^{\circ }}-\theta \right) \right]$
Using periodic identities for the terms, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +3\cos \left( {{120}^{\circ }}+\theta \right)+\cos 3\theta +3\cos \left( {{120}^{\circ }}-\theta \right) \right]$
We know from the sum to product formulas of trigonometry that
\[\cos A+\cos B\text{ }=2\cos \frac{A+B}{2}.~\cos \frac{A-B}{2}~\].
We will use the trigonometric formula for the terms $\cos \left( {{120}^{\circ }}-\theta \right)$ and $\cos \left( {{120}^{\circ }}+\theta \right)$.
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta +3\times 2\times \cos \left( \dfrac{{{120}^{\circ }}+\theta +{{120}^{\circ }}-\theta }{2} \right)\times \cos \left( \dfrac{{{120}^{\circ }}+\theta -{{120}^{\circ }}+\theta }{2} \right) \right]$
On simplifying the terms inside the brackets, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta +3\cos {{120}^{\circ }}\times \cos \theta \right]$ ……… $\left( 2 \right)$
We know the value of $\cos {{120}^{\circ }}$ is $-\dfrac{1}{2}$ .
Therefore, substituting the values in equation 2, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta +3\times 2\times -\dfrac{1}{2}\times \cos \theta \right]$
On further simplification, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta -3\cos \theta \right]$
Adding and subtracting the like terms inside the bracket, we get
$=\dfrac{1}{4}\left[ \cos 3\theta +\cos 3\theta +\cos 3\theta \right]$
Adding the terms inside the bracket, we get
$=\dfrac{3}{4}\cos 3\theta $
Thus, the correct option is option B.
Note:
We need to know the meaning of the trigonometric identities as we have used the trigonometric identities in this question. Trigonometric identities are defined as the equalities which involve the trigonometric functions and they are true for every value of the occurring variables for which both sides of the equality are defined. Remember that all the trigonometric identities are periodic in nature. They repeat their values after a certain interval.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

