
Find the value of \[\cos {{300}^{\circ }}-\sin {{420}^{\circ }}+\dfrac{\tan {{120}^{\circ }}}{2}+\cos \left( -{{30}^{\circ }} \right)\].
A. \[\dfrac{1+\sqrt{3}}{2}\].
B. \[\dfrac{\sqrt{3}-1}{2}\].
C. \[\dfrac{1-\sqrt{3}}{2}\].
D. \[\dfrac{2+\sqrt{3}}{2}\].
Answer
523.8k+ views
Hint: Here we have to find the value of the given trigonometric degree values. We can first split the degree values for the first two terms, we can then find the degree values for every term from the trigonometric table values and substitute it. We can then simplify it step by step to get the value of the given trigonometric expression.
Complete step by step solution:
Here we have to find the value for,
\[\cos {{300}^{\circ }}-\sin {{420}^{\circ }}+\dfrac{\tan {{120}^{\circ }}}{2}+\cos \left( -{{30}^{\circ }} \right)\]
We can now split the degree values for the first two term, we get the form’
\[\Rightarrow \cos \left( {{360}^{\circ }}-{{60}^{\circ }} \right)-\sin \left( {{360}^{\circ }}+{{60}^{\circ }} \right)+\dfrac{\tan {{120}^{\circ }}}{2}+\cos \left( -{{30}^{\circ }} \right)\]
We know that the first two terms can be written as,
\[\Rightarrow \cos \left( {{60}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right)+\dfrac{\tan {{120}^{\circ }}}{2}+\cos \left( -{{30}^{\circ }} \right)\]
We can now write the degree values from the trigonometric degree values table.
We know that \[\tan {{120}^{\circ }}=-\sqrt{3},\cos \left( -{{30}^{\circ }} \right)=\dfrac{\sqrt{3}}{2}\] (since \[\cos \left( -\theta \right)=\cos \theta \]) , we can now substitute these values in the above step, we get
\[\Rightarrow \cos \left( {{60}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right)-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\]
We can now cancel the similar terms in the above step, we get
\[\Rightarrow \cos \left( {{60}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right)\]
We know that the value of \[\cos {{60}^{\circ }}=\dfrac{1}{2}\] and \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
We can now substitute these values in the above step, we get
\[\Rightarrow \dfrac{1}{2}-\dfrac{\sqrt{3}}{2}=\dfrac{1-\sqrt{3}}{2}\]
So, the correct answer is “Option C”.
Note: We should always remember some of the degree values of sine, cosine and tangent to solve these types of problems. We should also know to convert the larger degree values to its equivalent smaller values by splitting into two and solving it. We should remember that \[\cos \left( -\theta \right)=\cos \theta \].
Complete step by step solution:
Here we have to find the value for,
\[\cos {{300}^{\circ }}-\sin {{420}^{\circ }}+\dfrac{\tan {{120}^{\circ }}}{2}+\cos \left( -{{30}^{\circ }} \right)\]
We can now split the degree values for the first two term, we get the form’
\[\Rightarrow \cos \left( {{360}^{\circ }}-{{60}^{\circ }} \right)-\sin \left( {{360}^{\circ }}+{{60}^{\circ }} \right)+\dfrac{\tan {{120}^{\circ }}}{2}+\cos \left( -{{30}^{\circ }} \right)\]
We know that the first two terms can be written as,
\[\Rightarrow \cos \left( {{60}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right)+\dfrac{\tan {{120}^{\circ }}}{2}+\cos \left( -{{30}^{\circ }} \right)\]
We can now write the degree values from the trigonometric degree values table.
We know that \[\tan {{120}^{\circ }}=-\sqrt{3},\cos \left( -{{30}^{\circ }} \right)=\dfrac{\sqrt{3}}{2}\] (since \[\cos \left( -\theta \right)=\cos \theta \]) , we can now substitute these values in the above step, we get
\[\Rightarrow \cos \left( {{60}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right)-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\]
We can now cancel the similar terms in the above step, we get
\[\Rightarrow \cos \left( {{60}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right)\]
We know that the value of \[\cos {{60}^{\circ }}=\dfrac{1}{2}\] and \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
We can now substitute these values in the above step, we get
\[\Rightarrow \dfrac{1}{2}-\dfrac{\sqrt{3}}{2}=\dfrac{1-\sqrt{3}}{2}\]
So, the correct answer is “Option C”.
Note: We should always remember some of the degree values of sine, cosine and tangent to solve these types of problems. We should also know to convert the larger degree values to its equivalent smaller values by splitting into two and solving it. We should remember that \[\cos \left( -\theta \right)=\cos \theta \].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

