
How do I find the value of $\cos ( - {240^ \circ })$?
Answer
551.7k+ views
Hint: Here we will use the negative $\theta $ property of cosine and then we will use the trigonometric ratios property of cosine to get the final answer.
Formula used: $\cos ( - \theta ) = \cos (\theta )$
$\cos ({180^ \circ } + \theta ) = - \cos \theta $
Complete step-by-step solution:
We have the given question as:
$ \Rightarrow \cos ( - {240^ \circ })$
Now we know that $\cos ( - \theta ) = \cos (\theta )$ therefore on using this formula on the given term we get:
$ \Rightarrow \cos ({240^ \circ })$
Now since there is no direct formula for getting the value of the angle, we will split it, since $240 = 180 + 60$ we will substitute it in the given term.
$ \Rightarrow \cos ({180^ \circ } + {60^ \circ })$
Now the above expression is in the form of $\cos ({180^ \circ } + \theta )$, since we know that the value of $\cos ({180^ \circ } + \theta )$ is $ - \cos \theta $, we can write the given expression as:
$ \Rightarrow - \cos ({60^ \circ })$
Now from the trigonometric table we know that the value of $\cos ({60^ \circ }) = \dfrac{1}{2}$, therefore we get:
$ \Rightarrow - \dfrac{1}{2}$
Therefore, we can conclude that $\cos ( - {240^ \circ }) = - \dfrac{1}{2}$.
Note: It is to be remembered which trigonometric functions are positive and negative in what quadrants.
The formula used over here is for $\cos ({180^ \circ } + \theta )$, the other formulas for the sine and cosine should be remembered.
When you add ${180^ \circ }$ to any angle, its position on the graph reverses, and whenever you add ${360^ \circ }$ to any angle, it reaches the same point after a complete rotation.
Basic trigonometric formulas should be remembered to solve these types of sums.
Since in this equation we had the angle as ${180^ \circ } + \theta $ we were able to use the formula directly, in other cases when there is addition of any two angles the addition-subtraction of angles property should be remembered and should be substituted to get the primitive sine, cosine and tan values.
Formula used: $\cos ( - \theta ) = \cos (\theta )$
$\cos ({180^ \circ } + \theta ) = - \cos \theta $
Complete step-by-step solution:
We have the given question as:
$ \Rightarrow \cos ( - {240^ \circ })$
Now we know that $\cos ( - \theta ) = \cos (\theta )$ therefore on using this formula on the given term we get:
$ \Rightarrow \cos ({240^ \circ })$
Now since there is no direct formula for getting the value of the angle, we will split it, since $240 = 180 + 60$ we will substitute it in the given term.
$ \Rightarrow \cos ({180^ \circ } + {60^ \circ })$
Now the above expression is in the form of $\cos ({180^ \circ } + \theta )$, since we know that the value of $\cos ({180^ \circ } + \theta )$ is $ - \cos \theta $, we can write the given expression as:
$ \Rightarrow - \cos ({60^ \circ })$
Now from the trigonometric table we know that the value of $\cos ({60^ \circ }) = \dfrac{1}{2}$, therefore we get:
$ \Rightarrow - \dfrac{1}{2}$
Therefore, we can conclude that $\cos ( - {240^ \circ }) = - \dfrac{1}{2}$.
Note: It is to be remembered which trigonometric functions are positive and negative in what quadrants.
The formula used over here is for $\cos ({180^ \circ } + \theta )$, the other formulas for the sine and cosine should be remembered.
When you add ${180^ \circ }$ to any angle, its position on the graph reverses, and whenever you add ${360^ \circ }$ to any angle, it reaches the same point after a complete rotation.
Basic trigonometric formulas should be remembered to solve these types of sums.
Since in this equation we had the angle as ${180^ \circ } + \theta $ we were able to use the formula directly, in other cases when there is addition of any two angles the addition-subtraction of angles property should be remembered and should be substituted to get the primitive sine, cosine and tan values.
Recently Updated Pages
The vernier constant of a travelling microscope is class 12 physics CBSE

An ammeter is always connected in series in a circuit class 12 physics CBSE

Assertion Thin films such as soap bubbles or thin layers class 12 physics CBSE

Explain the process of sewage water treatment before class 12 biology CBSE

What is the action of ammonia NH3 on benzoic acid Write class 12 chemistry CBSE

If two medians of a triangle are equal then prove that class 12 maths CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

