
Find the value of \[\cos 225^\circ-\sin 225^\circ+\tan 495^\circ-\cot 495^\circ\].
Answer
510.9k+ views
Hint: For angle between 0 to \[2\pi\], all trigonometric angles can be rotated by \[\dfrac{\pi}{2}\], \[\pi\] and \[2\pi\] following the sign convention of the angles in the four quadrants.
In the first quadrant, all trigonometric angles are positive. In the second quadrant, only $sin$ and $cosec$ are positive. In the third quadrant, only $tan$ and $cot$ are positive. And in the fourth quadrant, $cos$ and $sec$ is positive.
Complete step-by-step answer:
Given expression is \[\cos 225^\circ-\sin 225^\circ+\tan 495^\circ-\cot 495^\circ\].
Using the transformation \[\cos (\pi+x) = -\cos x\] and \[\sin (\pi+x) = -\sin x\], simplify the expression as,
\[\cos (180+45)^\circ-\sin (180+45)^\circ+\tan 495^\circ-\cot 495^\circ \\
= -\cos 45^\circ+\sin 45^\circ+\tan 495^\circ-\cot 495^\circ\]
Using the transformation \[\tan (2\pi+x) = \tan x\] and \[\cot (2\pi+x) = \cot x\], simplify the expression as,
\[-\cos 45^\circ+\sin 45^\circ+\tan (360+135)^\circ-\cot (360+135)^\circ\\
= -\cos 45^\circ+\sin 45^\circ+\tan 135^\circ-\cot 135^\circ\]
Using the transformation \[\tan \left(\dfrac{\pi}{2}+x\right) = -\tan x\] and \[\cot \left(\dfrac{\pi}{2}+x\right) = -\cot x\], simplify the remaining expression as,
\[-\cos 45^\circ+\sin 45^\circ+\tan 135^\circ-\cot 135^\circ\\
= -\cos 45^\circ+\sin 45^\circ-\tan 45^\circ+\cot 45^\circ\]
Using the value \[\cos 45^\circ = \sin 45^\circ = \dfrac{1}{\sqrt{2}}\] and \[\tan 45^\circ = \cot 45^\circ = 1\], the value of the expression is,
\[\begin{align*}-\cos 45^\circ+\sin 45^\circ-\tan 45^\circ+\cot 45^\circ &= -\dfrac{1}{\sqrt{2}}+-\dfrac{1}{\sqrt{2}}-1+1\\ &= 0\end{align*}\]
Hence the value of the expression is 0.
Note: You can also simplify the expression using the trigonometric formula for the sum of two angles.
For example, use the formula for \[\cos (A \pm B)\] and so on.
In the first quadrant, all trigonometric angles are positive. In the second quadrant, only $sin$ and $cosec$ are positive. In the third quadrant, only $tan$ and $cot$ are positive. And in the fourth quadrant, $cos$ and $sec$ is positive.
Complete step-by-step answer:
Given expression is \[\cos 225^\circ-\sin 225^\circ+\tan 495^\circ-\cot 495^\circ\].
Using the transformation \[\cos (\pi+x) = -\cos x\] and \[\sin (\pi+x) = -\sin x\], simplify the expression as,
\[\cos (180+45)^\circ-\sin (180+45)^\circ+\tan 495^\circ-\cot 495^\circ \\
= -\cos 45^\circ+\sin 45^\circ+\tan 495^\circ-\cot 495^\circ\]
Using the transformation \[\tan (2\pi+x) = \tan x\] and \[\cot (2\pi+x) = \cot x\], simplify the expression as,
\[-\cos 45^\circ+\sin 45^\circ+\tan (360+135)^\circ-\cot (360+135)^\circ\\
= -\cos 45^\circ+\sin 45^\circ+\tan 135^\circ-\cot 135^\circ\]
Using the transformation \[\tan \left(\dfrac{\pi}{2}+x\right) = -\tan x\] and \[\cot \left(\dfrac{\pi}{2}+x\right) = -\cot x\], simplify the remaining expression as,
\[-\cos 45^\circ+\sin 45^\circ+\tan 135^\circ-\cot 135^\circ\\
= -\cos 45^\circ+\sin 45^\circ-\tan 45^\circ+\cot 45^\circ\]
Using the value \[\cos 45^\circ = \sin 45^\circ = \dfrac{1}{\sqrt{2}}\] and \[\tan 45^\circ = \cot 45^\circ = 1\], the value of the expression is,
\[\begin{align*}-\cos 45^\circ+\sin 45^\circ-\tan 45^\circ+\cot 45^\circ &= -\dfrac{1}{\sqrt{2}}+-\dfrac{1}{\sqrt{2}}-1+1\\ &= 0\end{align*}\]
Hence the value of the expression is 0.
Note: You can also simplify the expression using the trigonometric formula for the sum of two angles.
For example, use the formula for \[\cos (A \pm B)\] and so on.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
