
Find the value of ${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}$ if ${{\sec }^{-1}}x+{{\csc }^{-1}}x=\dfrac{\pi }{2}$ .
Answer
584.7k+ views
Hint:To find the value of ${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}$ , we will use the property ${{\cos }^{-1}}\dfrac{1}{x}={{\sec }^{-1}}x$ and substitute the value to the previous equation. Using the given \[{{\sec }^{-1}}x={{\csc }^{-1}}y\] and the property ${{\sec }^{-1}}x+{{\csc }^{-1}}x=\dfrac{\pi }{2}$ the required value can be obtained.
Complete step by step answer:
We need to find the value of ${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}$ given that \[{{\sec }^{-1}}x={{\csc }^{-1}}y\] .
Let us consider the equation ${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}$ .
We know that ${{\cos }^{-1}}\dfrac{1}{x}={{\sec }^{-1}}x$ . Thus the above equation can be written as
${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}={{\sec }^{-1}}x+{{\sec }^{-1}}y$
It is given that \[{{\sec }^{-1}}x={{\csc }^{-1}}y\] . Hence, the above equation can be written as
${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}={{\sec }^{-1}}x+{{\csc }^{-1}}x$
We know from the properties of inverse trigonometric functions that ${{\sec }^{-1}}x+{{\csc }^{-1}}x=\dfrac{\pi }{2}$ .
Hence, we will get
${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}=\dfrac{\pi }{2}$ .
Note:
Secant and cosecant are inversely related. There can be a possibility of making errors in the properties ${{\cos }^{-1}}\dfrac{1}{x}={{\sec }^{-1}}x$ and ${{\sec }^{-1}}x+{{\csc }^{-1}}x=\dfrac{\pi }{2}$ . You have to be very thorough with all the trigonometric properties. The above question can also be solved in an alternate method. This is illustrated below:
Let us first consider the ranges of the functions \[{{\sec }^{-1}}x\]and \[{{\csc }^{-1}}y\] .
We know that the range of \[{{\sec }^{-1}}x=\left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]\] and the range of \[{{\csc }^{-1}}y=\left[ \dfrac{-\pi }{2},0 \right)\cup \left( 0,\dfrac{\pi }{2} \right]\]
The common of these is $\dfrac{\pi }{4}$ .
Thus we can write $x$ from ${{\sec }^{-1}}x$as shown below.
$x=\sec \left( \dfrac{\pi }{4} \right)=\sqrt{2}$
Similarly, from \[\cos e{{c}^{-1}}y\] we can write as follows.
\[y=\csc \left( \dfrac{\pi }{4} \right)=\sqrt{2}\]
Hence we can find the value of${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}$ .
First let us find the value of ${{\cos }^{-1}}\dfrac{1}{x}$
${{\cos }^{-1}}\dfrac{1}{x}={{\cos }^{-1}}\dfrac{1}{\sqrt{2}}=\dfrac{\pi }{4}$
Similarly, we can find the value of${{\cos }^{-1}}\dfrac{1}{y}$ .
${{\cos }^{-1}}\dfrac{1}{y}={{\cos }^{-1}}\dfrac{1}{\sqrt{2}}=\dfrac{\pi }{4}$
Substituting these values in ${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}$ , we will get
${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}=\dfrac{\pi }{4}+\dfrac{\pi }{4}=\dfrac{\pi }{2}$
Now let us add these. So we will get
${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}=\dfrac{\pi }{2}$
Hence, the value of \[{{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}=\dfrac{\pi }{2}\]
Complete step by step answer:
We need to find the value of ${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}$ given that \[{{\sec }^{-1}}x={{\csc }^{-1}}y\] .
Let us consider the equation ${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}$ .
We know that ${{\cos }^{-1}}\dfrac{1}{x}={{\sec }^{-1}}x$ . Thus the above equation can be written as
${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}={{\sec }^{-1}}x+{{\sec }^{-1}}y$
It is given that \[{{\sec }^{-1}}x={{\csc }^{-1}}y\] . Hence, the above equation can be written as
${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}={{\sec }^{-1}}x+{{\csc }^{-1}}x$
We know from the properties of inverse trigonometric functions that ${{\sec }^{-1}}x+{{\csc }^{-1}}x=\dfrac{\pi }{2}$ .
Hence, we will get
${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}=\dfrac{\pi }{2}$ .
Note:
Secant and cosecant are inversely related. There can be a possibility of making errors in the properties ${{\cos }^{-1}}\dfrac{1}{x}={{\sec }^{-1}}x$ and ${{\sec }^{-1}}x+{{\csc }^{-1}}x=\dfrac{\pi }{2}$ . You have to be very thorough with all the trigonometric properties. The above question can also be solved in an alternate method. This is illustrated below:
Let us first consider the ranges of the functions \[{{\sec }^{-1}}x\]and \[{{\csc }^{-1}}y\] .
We know that the range of \[{{\sec }^{-1}}x=\left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]\] and the range of \[{{\csc }^{-1}}y=\left[ \dfrac{-\pi }{2},0 \right)\cup \left( 0,\dfrac{\pi }{2} \right]\]
The common of these is $\dfrac{\pi }{4}$ .
Thus we can write $x$ from ${{\sec }^{-1}}x$as shown below.
$x=\sec \left( \dfrac{\pi }{4} \right)=\sqrt{2}$
Similarly, from \[\cos e{{c}^{-1}}y\] we can write as follows.
\[y=\csc \left( \dfrac{\pi }{4} \right)=\sqrt{2}\]
Hence we can find the value of${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}$ .
First let us find the value of ${{\cos }^{-1}}\dfrac{1}{x}$
${{\cos }^{-1}}\dfrac{1}{x}={{\cos }^{-1}}\dfrac{1}{\sqrt{2}}=\dfrac{\pi }{4}$
Similarly, we can find the value of${{\cos }^{-1}}\dfrac{1}{y}$ .
${{\cos }^{-1}}\dfrac{1}{y}={{\cos }^{-1}}\dfrac{1}{\sqrt{2}}=\dfrac{\pi }{4}$
Substituting these values in ${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}$ , we will get
${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}=\dfrac{\pi }{4}+\dfrac{\pi }{4}=\dfrac{\pi }{2}$
Now let us add these. So we will get
${{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}=\dfrac{\pi }{2}$
Hence, the value of \[{{\cos }^{-1}}\dfrac{1}{x}+{{\cos }^{-1}}\dfrac{1}{y}=\dfrac{\pi }{2}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

