Answer
Verified
438.9k+ views
Hint: We know that $ \cos 90{}^\circ =0 $. Do not try to simplify by using any formula of "Product to Sum" type. If we multiply anything with 0 the result will also come 0.
Complete step-by-step answer:
We know that the value of $ \cos \theta $ lies between -1 and 1.
Recall that $ \cos 0{}^\circ =1 $ , $ \cos 90{}^\circ =0 $ and $ \cos 180{}^\circ =-1 $ .
Since $ \cos 90{}^\circ =0 $ is one of the terms in the product $ \cos 1{}^\circ \cos 2{}^\circ \cos 3{}^\circ ...\cos 180{}^\circ $ , the final product will be 0.
Hence, the correct answer is C. 0.
Note:The value of $ \sin \theta $ and $ \cos \theta $ lies between -1 and 1.
Remember the trigonometric formula to solve these questions easily.
Sum-Product formula:
$ \sin 2A+\sin 2B=2\sin (A+B)\cos (A-B) $
$ \sin 2A-\sin 2B=2\cos (A+B)\sin (A-B) $
$ \cos 2A+\cos 2B=2\cos (A+B)\cos (A-B) $
$ \cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) $
Trigonometric Ratios for Allied Angles:
$ \sin \left( -\theta \right)=-\sin \theta $ $ \cos \left( -\theta \right)=\cos \theta $
$ \sin \left( 2n\pi +\theta \right)=\sin \theta $ $ \cos \left( 2n\pi +\theta \right)=\cos \theta $
$ \sin \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\sin \theta $ $ \cos \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\cos \theta $
$ \sin \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\cos \theta $ $ \cos \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\left( -\sin \theta \right) $
Complete step-by-step answer:
We know that the value of $ \cos \theta $ lies between -1 and 1.
Recall that $ \cos 0{}^\circ =1 $ , $ \cos 90{}^\circ =0 $ and $ \cos 180{}^\circ =-1 $ .
Since $ \cos 90{}^\circ =0 $ is one of the terms in the product $ \cos 1{}^\circ \cos 2{}^\circ \cos 3{}^\circ ...\cos 180{}^\circ $ , the final product will be 0.
Hence, the correct answer is C. 0.
Note:The value of $ \sin \theta $ and $ \cos \theta $ lies between -1 and 1.
Remember the trigonometric formula to solve these questions easily.
Sum-Product formula:
$ \sin 2A+\sin 2B=2\sin (A+B)\cos (A-B) $
$ \sin 2A-\sin 2B=2\cos (A+B)\sin (A-B) $
$ \cos 2A+\cos 2B=2\cos (A+B)\cos (A-B) $
$ \cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) $
Trigonometric Ratios for Allied Angles:
$ \sin \left( -\theta \right)=-\sin \theta $ $ \cos \left( -\theta \right)=\cos \theta $
$ \sin \left( 2n\pi +\theta \right)=\sin \theta $ $ \cos \left( 2n\pi +\theta \right)=\cos \theta $
$ \sin \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\sin \theta $ $ \cos \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\cos \theta $
$ \sin \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\cos \theta $ $ \cos \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\left( -\sin \theta \right) $
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it