
Find the value of \[{{2}^{\dfrac{1}{4}}}{{.4}^{\dfrac{1}{8}}}{{.8}^{\dfrac{1}{16}}}{{.16}^{\dfrac{1}{32}}}......\]?
(a) 1
(b) 2
(c) $\dfrac{3}{2}$
(d) $\dfrac{5}{2}$
Answer
576.6k+ views
Hint: We start solving the problem by writing 4, 8, 16 in terms of exponents of 2. We then use the law of exponent ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}$ for the exponents, we just obtained. We then use the law of exponent ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. We then find the sum of the terms present in the power of 2 by making necessary calculations. After finding the sum, we use it and make the required calculations to get the required answer.
Complete step by step answer:
According to the problem, we need to find the value of \[{{2}^{\dfrac{1}{4}}}{{.4}^{\dfrac{1}{8}}}{{.8}^{\dfrac{1}{16}}}{{.16}^{\dfrac{1}{32}}}......\].
Let us assume the value of \[{{2}^{\dfrac{1}{4}}}{{.4}^{\dfrac{1}{8}}}{{.8}^{\dfrac{1}{16}}}{{.16}^{\dfrac{1}{32}}}......\] be ‘x’.
So, we have $x={{2}^{\dfrac{1}{4}}}{{.4}^{\dfrac{1}{8}}}{{.8}^{\dfrac{1}{16}}}{{.16}^{\dfrac{1}{32}}}......$.
$\Rightarrow x={{2}^{\dfrac{1}{4}}}.{{\left( {{2}^{2}} \right)}^{\dfrac{1}{8}}}.{{\left( {{2}^{3}} \right)}^{\dfrac{1}{16}}}.{{\left( {{2}^{4}} \right)}^{\dfrac{1}{32}}}......$---(1).
From laws of exponents, we know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}$. Let us use this in equation (1).
$\Rightarrow x={{2}^{\dfrac{1}{4}}}{{.2}^{\dfrac{2}{8}}}{{.2}^{\dfrac{3}{16}}}{{.2}^{\dfrac{4}{32}}}......$ ---(2).
From laws of exponents, we know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. Let us use this in equation (2).
$\Rightarrow x={{2}^{\dfrac{1}{4}+\dfrac{2}{8}+\dfrac{3}{16}+\dfrac{4}{32}+.....}}$ ---(3).
Let us first find the sum of $\dfrac{1}{4}+\dfrac{2}{8}+\dfrac{3}{16}+\dfrac{4}{32}+.....$. Let us assume the sum as S.
So, we have $x={{2}^{S}}$ ---(4)
So, we have $S=\dfrac{1}{4}+\dfrac{2}{8}+\dfrac{3}{16}+\dfrac{4}{32}+.....$ ---(5). Let us divide this S with 2.
We get $\dfrac{S}{2}=\dfrac{1}{8}+\dfrac{2}{16}+\dfrac{3}{32}+\dfrac{4}{64}+.....$ ---(6).
Let us subtract equation (6) from equation (5).
So, $S-\dfrac{S}{2}=\left( \dfrac{1}{4}+\dfrac{2}{8}+\dfrac{3}{16}+\dfrac{4}{32}+..... \right)-\left( \dfrac{1}{8}+\dfrac{2}{16}+\dfrac{3}{32}+\dfrac{4}{64}+..... \right)$.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+.....$.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{4}\left( 1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..... \right)$.
Here we can see that $1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+.....$ resembles infinite geometric series with first term ‘1’ and common ration $\dfrac{1}{2}$.
We know that sum of infinite geometric series is $\dfrac{a}{1-r}\left( if\left| r \right|<1 \right)$, where ‘a’ is first term and ‘r’ is common ratio.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{4}\left( \dfrac{1}{1-\dfrac{1}{2}} \right)$.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{4}\left( \dfrac{1}{\dfrac{1}{2}} \right)$.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{4}\left( 2 \right)$.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{2}$.
$\Rightarrow S=1$. Let us substitute in equation (4).
So, we get $x={{2}^{1}}=2$.
We have found the value of \[{{2}^{\dfrac{1}{4}}}{{.4}^{\dfrac{1}{8}}}{{.8}^{\dfrac{1}{16}}}{{.16}^{\dfrac{1}{32}}}......\] as 2.
So, the correct answer is “Option b”.
Note: We can see that the sum $S=\dfrac{1}{4}+\dfrac{2}{8}+\dfrac{3}{16}+\dfrac{4}{32}+.....$ resembles the infinite sum of arithmetic-geometric series. We can find this sum by using the formula of sum of infinite terms of arithmetic-geometric series $\dfrac{a}{1-r}+\dfrac{dr}{{{\left( 1-r \right)}^{2}}},for\left| r \right|<1$. We should not confuse or make calculation mistakes while solving this problem. Whenever we get this type of problem, we need to make use of laws of exponents which makes our calculations easier.
Complete step by step answer:
According to the problem, we need to find the value of \[{{2}^{\dfrac{1}{4}}}{{.4}^{\dfrac{1}{8}}}{{.8}^{\dfrac{1}{16}}}{{.16}^{\dfrac{1}{32}}}......\].
Let us assume the value of \[{{2}^{\dfrac{1}{4}}}{{.4}^{\dfrac{1}{8}}}{{.8}^{\dfrac{1}{16}}}{{.16}^{\dfrac{1}{32}}}......\] be ‘x’.
So, we have $x={{2}^{\dfrac{1}{4}}}{{.4}^{\dfrac{1}{8}}}{{.8}^{\dfrac{1}{16}}}{{.16}^{\dfrac{1}{32}}}......$.
$\Rightarrow x={{2}^{\dfrac{1}{4}}}.{{\left( {{2}^{2}} \right)}^{\dfrac{1}{8}}}.{{\left( {{2}^{3}} \right)}^{\dfrac{1}{16}}}.{{\left( {{2}^{4}} \right)}^{\dfrac{1}{32}}}......$---(1).
From laws of exponents, we know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}$. Let us use this in equation (1).
$\Rightarrow x={{2}^{\dfrac{1}{4}}}{{.2}^{\dfrac{2}{8}}}{{.2}^{\dfrac{3}{16}}}{{.2}^{\dfrac{4}{32}}}......$ ---(2).
From laws of exponents, we know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$. Let us use this in equation (2).
$\Rightarrow x={{2}^{\dfrac{1}{4}+\dfrac{2}{8}+\dfrac{3}{16}+\dfrac{4}{32}+.....}}$ ---(3).
Let us first find the sum of $\dfrac{1}{4}+\dfrac{2}{8}+\dfrac{3}{16}+\dfrac{4}{32}+.....$. Let us assume the sum as S.
So, we have $x={{2}^{S}}$ ---(4)
So, we have $S=\dfrac{1}{4}+\dfrac{2}{8}+\dfrac{3}{16}+\dfrac{4}{32}+.....$ ---(5). Let us divide this S with 2.
We get $\dfrac{S}{2}=\dfrac{1}{8}+\dfrac{2}{16}+\dfrac{3}{32}+\dfrac{4}{64}+.....$ ---(6).
Let us subtract equation (6) from equation (5).
So, $S-\dfrac{S}{2}=\left( \dfrac{1}{4}+\dfrac{2}{8}+\dfrac{3}{16}+\dfrac{4}{32}+..... \right)-\left( \dfrac{1}{8}+\dfrac{2}{16}+\dfrac{3}{32}+\dfrac{4}{64}+..... \right)$.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+.....$.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{4}\left( 1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..... \right)$.
Here we can see that $1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+.....$ resembles infinite geometric series with first term ‘1’ and common ration $\dfrac{1}{2}$.
We know that sum of infinite geometric series is $\dfrac{a}{1-r}\left( if\left| r \right|<1 \right)$, where ‘a’ is first term and ‘r’ is common ratio.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{4}\left( \dfrac{1}{1-\dfrac{1}{2}} \right)$.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{4}\left( \dfrac{1}{\dfrac{1}{2}} \right)$.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{4}\left( 2 \right)$.
$\Rightarrow \dfrac{S}{2}=\dfrac{1}{2}$.
$\Rightarrow S=1$. Let us substitute in equation (4).
So, we get $x={{2}^{1}}=2$.
We have found the value of \[{{2}^{\dfrac{1}{4}}}{{.4}^{\dfrac{1}{8}}}{{.8}^{\dfrac{1}{16}}}{{.16}^{\dfrac{1}{32}}}......\] as 2.
So, the correct answer is “Option b”.
Note: We can see that the sum $S=\dfrac{1}{4}+\dfrac{2}{8}+\dfrac{3}{16}+\dfrac{4}{32}+.....$ resembles the infinite sum of arithmetic-geometric series. We can find this sum by using the formula of sum of infinite terms of arithmetic-geometric series $\dfrac{a}{1-r}+\dfrac{dr}{{{\left( 1-r \right)}^{2}}},for\left| r \right|<1$. We should not confuse or make calculation mistakes while solving this problem. Whenever we get this type of problem, we need to make use of laws of exponents which makes our calculations easier.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

