
How do you find the value of $ c $ that satisfy the equation $ \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} = f'\left( c \right) $ in the conclusion of the mean value theorem for the function $ f\left( x \right) = 4{x^2} + 4x - 3 $ on the interval $ \left[ { - 1,0} \right] $ ?
Answer
520.5k+ views
Hint: The mean value theorem states that if a given function $ f $ is continuous in $ \left[ {a,b} \right] $ and differentiable in $ \left( {a,b} \right) $ , then there exists a point $ c $ in the interval $ \left( {a,b} \right) $ such that the derivative of the function at the point $ c $ can be given as $ f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} $ . We can use this theorem to find the value of $ c $ in the interval $ \left( {a,b} \right) $ .
Complete step by step solution:
We have been given that the function $ f\left( x \right) = 4{x^2} + 4x - 3 $ satisfies the mean value theorem in the interval $ \left[ { - 1,0} \right] $ .
We have to find the value of $ c $ in the interval $ \left( { - 1,0} \right) $ such that $ \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} = f'\left( c \right) $ .
Here $ a = - 1 $ and $ b = 0 $ .
We can find $ f\left( a \right) $ and $ f\left( b \right) $ using $ f\left( x \right) $ as,
$
f\left( a \right) = 4{a^2} + 4a - 3 \\
\Rightarrow f\left( { - 1} \right) = 4{\left( { - 1} \right)^2} + \left( {4 \times - 1} \right) - 3 = 4 - 4 - 3 = - 3 \\
f\left( b \right) = 4{b^2} + 4b - 3 \\
\Rightarrow f\left( 0 \right) = 4{\left( 0 \right)^2} + \left( {4 \times 0} \right) - 3 = 0 + 0 - 3 = - 3 \;
$
Also we can find the derivative of the function $ f\left( x \right) $ as,
$ f'\left( x \right) = \dfrac{{d\left( {4{x^2} + 4x - 3} \right)}}{{dx}} = 8x + 4 $
Thus, for any point $ c $ we have,
$ f'\left( c \right) = 8c + 4 $
We put all the values in the formula for mean value theorem.
$
f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} \\
\Rightarrow 8c + 4 = \dfrac{{\left( { - 3} \right) - \left( { - 3} \right)}}{{0 - \left( { - 1} \right)}} = \dfrac{{ - 3 + 3}}{{0 + 1}} = 0 \\
\Rightarrow 8c = - 4 \\
\Rightarrow c = - \dfrac{4}{8} = - \dfrac{1}{2} \;
$
Thus, we get the value of $ c = - \dfrac{1}{2} $ .
Hence, the required value is $ c = - \dfrac{1}{2} $ .
So, the correct answer is “$ c = - \dfrac{1}{2} $ ”.
Note: We used the conclusion of the mean value theorem to get the value of $ c $ . We can see that the final value of $ c $ lies in the open interval $ \left( { - 1,0} \right) $ . While solving the problem we have to be careful that the value of $ a $ is the lower end of the given interval and the value of $ b $ is the upper end of the given interval. In this question we got $ f\left( a \right) = f\left( b \right) = - 3 $ which may not always be the case in mean value theorem. When $ f\left( a \right) = f\left( b \right) $ , this becomes a special case of mean value theorem, known as Rolle’s theorem.
Complete step by step solution:
We have been given that the function $ f\left( x \right) = 4{x^2} + 4x - 3 $ satisfies the mean value theorem in the interval $ \left[ { - 1,0} \right] $ .
We have to find the value of $ c $ in the interval $ \left( { - 1,0} \right) $ such that $ \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} = f'\left( c \right) $ .
Here $ a = - 1 $ and $ b = 0 $ .
We can find $ f\left( a \right) $ and $ f\left( b \right) $ using $ f\left( x \right) $ as,
$
f\left( a \right) = 4{a^2} + 4a - 3 \\
\Rightarrow f\left( { - 1} \right) = 4{\left( { - 1} \right)^2} + \left( {4 \times - 1} \right) - 3 = 4 - 4 - 3 = - 3 \\
f\left( b \right) = 4{b^2} + 4b - 3 \\
\Rightarrow f\left( 0 \right) = 4{\left( 0 \right)^2} + \left( {4 \times 0} \right) - 3 = 0 + 0 - 3 = - 3 \;
$
Also we can find the derivative of the function $ f\left( x \right) $ as,
$ f'\left( x \right) = \dfrac{{d\left( {4{x^2} + 4x - 3} \right)}}{{dx}} = 8x + 4 $
Thus, for any point $ c $ we have,
$ f'\left( c \right) = 8c + 4 $
We put all the values in the formula for mean value theorem.
$
f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} \\
\Rightarrow 8c + 4 = \dfrac{{\left( { - 3} \right) - \left( { - 3} \right)}}{{0 - \left( { - 1} \right)}} = \dfrac{{ - 3 + 3}}{{0 + 1}} = 0 \\
\Rightarrow 8c = - 4 \\
\Rightarrow c = - \dfrac{4}{8} = - \dfrac{1}{2} \;
$
Thus, we get the value of $ c = - \dfrac{1}{2} $ .
Hence, the required value is $ c = - \dfrac{1}{2} $ .
So, the correct answer is “$ c = - \dfrac{1}{2} $ ”.
Note: We used the conclusion of the mean value theorem to get the value of $ c $ . We can see that the final value of $ c $ lies in the open interval $ \left( { - 1,0} \right) $ . While solving the problem we have to be careful that the value of $ a $ is the lower end of the given interval and the value of $ b $ is the upper end of the given interval. In this question we got $ f\left( a \right) = f\left( b \right) = - 3 $ which may not always be the case in mean value theorem. When $ f\left( a \right) = f\left( b \right) $ , this becomes a special case of mean value theorem, known as Rolle’s theorem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

