
Find the value of b if $\cos \alpha +\cos \beta +\cos \gamma +\cos \left( \alpha +\beta +\gamma \right)=b\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right).$
Answer
517.8k+ views
Hint: We know the formula for the extension of addition of two cosines that converts it into the multiplication form. According to this formula, $\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ . We need to use this multiple times, and exploit the fact that $\cos \left( -\theta \right)=\cos \theta $ , to find the value of b.
Complete step by step solution:
We know that to convert the addition of cosines into multiplication of cosines, we have the following formula
$\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)...\left( i \right)$
We are given that $\cos \alpha +\cos \beta +\cos \gamma +\cos \left( \alpha +\beta +\gamma \right)=b\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)...\left( ii \right)$
Let us use the LHS part of this equation.
$LHS=\cos \alpha +\cos \beta +\cos \gamma +\cos \left( \alpha +\beta +\gamma \right)$
Let us use equation (i),
$LHS=\left[ \cos \alpha +\cos \beta \right]+\left[ \cos \gamma +\cos \left( \alpha +\beta +\gamma \right) \right]$
$\Rightarrow LHS=\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right) \right]+\left[ 2\cos \left( \dfrac{\gamma +\left( \alpha +\beta +\gamma \right)}{2} \right)\cos \left( \dfrac{\gamma -\left( \alpha +\beta +\gamma \right)}{2} \right) \right]$
Simplifying the above equation, we get
$LHS=\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right) \right]+\left[ 2\cos \left( \dfrac{\alpha +\beta +2\gamma }{2} \right)\cos \left( \dfrac{-\alpha -\beta }{2} \right) \right]$
We are very well aware of the fact that $\cos \left( -\theta \right)=\cos \theta $ . Hence, $\cos \left( \dfrac{-\alpha -\beta }{2} \right)=\cos \left( \dfrac{\alpha +\beta }{2} \right)$ .
Thus, we can write,
$LHS=\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right) \right]+\left[ 2\cos \left( \dfrac{\alpha +\beta +2\gamma }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right) \right]$
We can further simplify the above equation as
$LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ \cos \left( \dfrac{\alpha -\beta }{2} \right)+\cos \left( \dfrac{\alpha +\beta +2\gamma }{2} \right) \right]$
We can again use equation (i) for the addition of cosines $\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
Thus, we get
$LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\dfrac{\alpha -\beta }{2}+\dfrac{\alpha +\beta +2\gamma }{2}}{2} \right)\cos \left( \dfrac{\dfrac{\alpha -\beta }{2}-\dfrac{\alpha +\beta +2\gamma }{2}}{2} \right) \right]$
We can simplify the above equation as
$LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\dfrac{\alpha -\beta +\alpha +\beta +2\gamma }{2}}{2} \right)\cos \left( \dfrac{\dfrac{\alpha -\beta -\alpha -\beta -2\gamma }{2}}{2} \right) \right]$
We can cancel few terms and we will get
$LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\dfrac{2\alpha +2\gamma }{2}}{2} \right)\cos \left( \dfrac{\dfrac{-2\beta -2\gamma }{2}}{2} \right) \right]$
$\Rightarrow LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\alpha +\gamma }{2} \right)\cos \left( \dfrac{-\beta -\gamma }{2} \right) \right]$
We can, now, again use the formula $\cos \left( -\theta \right)=\cos \theta $ . Hence, we can also say that $\cos \left( \dfrac{-\beta -\gamma }{2} \right)=\cos \left( \dfrac{\beta +\gamma }{2} \right)$ .
Thus, our equation is simplified as
$\Rightarrow LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\alpha +\gamma }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right) \right]$
Or we can write it as
$\Rightarrow LHS=4\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)$
We can now compare this LHS part with the RHS part of equation (ii). So, now we have
$4\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)=b\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)$
Hence, by comparing, we can say that $b=4$ .
Thus, the value of b is 4.
Note: This problem requires a good amount of calculation. So, we must be very careful, and try not to make mistakes while calculating. Some of the students, in hurry, may consider $\cos \left( \dfrac{\dfrac{2\alpha +2\gamma }{2}}{2} \right)\text{ as }\cos \left( \dfrac{2\alpha +2\gamma }{\dfrac{2}{2}} \right).$We must be clear that $\cos \left( \dfrac{\dfrac{2\alpha +2\gamma }{2}}{2} \right)=\cos \left( \dfrac{\left\{ \dfrac{2\alpha +2\gamma }{2} \right\}}{2} \right)$ and not $\cos \left( \dfrac{2\alpha +2\gamma }{\left\{ \dfrac{2}{2} \right\}} \right).$
Complete step by step solution:
We know that to convert the addition of cosines into multiplication of cosines, we have the following formula
$\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)...\left( i \right)$
We are given that $\cos \alpha +\cos \beta +\cos \gamma +\cos \left( \alpha +\beta +\gamma \right)=b\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)...\left( ii \right)$
Let us use the LHS part of this equation.
$LHS=\cos \alpha +\cos \beta +\cos \gamma +\cos \left( \alpha +\beta +\gamma \right)$
Let us use equation (i),
$LHS=\left[ \cos \alpha +\cos \beta \right]+\left[ \cos \gamma +\cos \left( \alpha +\beta +\gamma \right) \right]$
$\Rightarrow LHS=\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right) \right]+\left[ 2\cos \left( \dfrac{\gamma +\left( \alpha +\beta +\gamma \right)}{2} \right)\cos \left( \dfrac{\gamma -\left( \alpha +\beta +\gamma \right)}{2} \right) \right]$
Simplifying the above equation, we get
$LHS=\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right) \right]+\left[ 2\cos \left( \dfrac{\alpha +\beta +2\gamma }{2} \right)\cos \left( \dfrac{-\alpha -\beta }{2} \right) \right]$
We are very well aware of the fact that $\cos \left( -\theta \right)=\cos \theta $ . Hence, $\cos \left( \dfrac{-\alpha -\beta }{2} \right)=\cos \left( \dfrac{\alpha +\beta }{2} \right)$ .
Thus, we can write,
$LHS=\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right) \right]+\left[ 2\cos \left( \dfrac{\alpha +\beta +2\gamma }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right) \right]$
We can further simplify the above equation as
$LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ \cos \left( \dfrac{\alpha -\beta }{2} \right)+\cos \left( \dfrac{\alpha +\beta +2\gamma }{2} \right) \right]$
We can again use equation (i) for the addition of cosines $\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
Thus, we get
$LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\dfrac{\alpha -\beta }{2}+\dfrac{\alpha +\beta +2\gamma }{2}}{2} \right)\cos \left( \dfrac{\dfrac{\alpha -\beta }{2}-\dfrac{\alpha +\beta +2\gamma }{2}}{2} \right) \right]$
We can simplify the above equation as
$LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\dfrac{\alpha -\beta +\alpha +\beta +2\gamma }{2}}{2} \right)\cos \left( \dfrac{\dfrac{\alpha -\beta -\alpha -\beta -2\gamma }{2}}{2} \right) \right]$
We can cancel few terms and we will get
$LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\dfrac{2\alpha +2\gamma }{2}}{2} \right)\cos \left( \dfrac{\dfrac{-2\beta -2\gamma }{2}}{2} \right) \right]$
$\Rightarrow LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\alpha +\gamma }{2} \right)\cos \left( \dfrac{-\beta -\gamma }{2} \right) \right]$
We can, now, again use the formula $\cos \left( -\theta \right)=\cos \theta $ . Hence, we can also say that $\cos \left( \dfrac{-\beta -\gamma }{2} \right)=\cos \left( \dfrac{\beta +\gamma }{2} \right)$ .
Thus, our equation is simplified as
$\Rightarrow LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\alpha +\gamma }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right) \right]$
Or we can write it as
$\Rightarrow LHS=4\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)$
We can now compare this LHS part with the RHS part of equation (ii). So, now we have
$4\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)=b\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)$
Hence, by comparing, we can say that $b=4$ .
Thus, the value of b is 4.
Note: This problem requires a good amount of calculation. So, we must be very careful, and try not to make mistakes while calculating. Some of the students, in hurry, may consider $\cos \left( \dfrac{\dfrac{2\alpha +2\gamma }{2}}{2} \right)\text{ as }\cos \left( \dfrac{2\alpha +2\gamma }{\dfrac{2}{2}} \right).$We must be clear that $\cos \left( \dfrac{\dfrac{2\alpha +2\gamma }{2}}{2} \right)=\cos \left( \dfrac{\left\{ \dfrac{2\alpha +2\gamma }{2} \right\}}{2} \right)$ and not $\cos \left( \dfrac{2\alpha +2\gamma }{\left\{ \dfrac{2}{2} \right\}} \right).$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

