
Find the value of a for which the inequality \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] is true for at least one $ x \in (0,\dfrac{\pi }{2}) $
(A) $ a \in ( - \infty , - 1) $
(B) $ a \in \{ ( - 3, - 2\sqrt 5 ),3\} $
(C) $ \alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) $
(D) None of these
Answer
566.7k+ views
Hint: To solve this question, we will start with assuming \[\cot x{\text{ }} = {\text{ }}t\], then we get our given equation in the form $ {t^2} + (a + 1)t - (a - 3) < 0 $ for at least one $ t \in (0,\infty ) $ . From here we will consider two cases, and then we will get our required answer.
Complete step-by-step answer:
We have been given an inequality \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] and we need to find the value of a for which the inequality is true for at least one $ x \in (0,\dfrac{\pi }{2}) $ .
\[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] for at least one $ x \in (0,\dfrac{\pi }{2}) $ .
Now, let \[\cot x{\text{ }} = {\text{ }}t\]
We know that, $ \cot 0 = \infty $ and $ \cot \dfrac{\pi }{2} = 0 $
Since, $ x \in (0,\dfrac{\pi }{2}) $ , therefore, on putting $ \cot 0 = \infty $ and $ \cot \dfrac{\pi }{2} = 0 $ , we get $ t \in (0,\infty ) $
Now on putting the value \[\cot x{\text{ }} = {\text{ }}t\], we get our above equation \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] in the form $ {t^2} + (a + 1)t - (a - 3) < 0. $
Now, let $ f(t) = {t^2} + (a + 1)t - (a - 3) < 0 $ , for at least one $ t \in (0,\infty ) $
So, we have two following possibilities for f(t). Let us see the cases mentioned below.
Case 1:
$
f(0) < 0 \\
f(0) = - (a - 3) < 0 \\
= - a + 3 < 0 \\
= - a < - 3 \\
= a > 3 \\
$
Case 2:
We have been given a quadratic equation, so, we will consider, \[D > {\text{ }}0\], i.e., the equation will have distinct roots.
$ i.e.,{b^2} - 4ac > 0 $
$
\Rightarrow {(a + 1)^2} + 4(a - 3) > 0 \\
\Rightarrow {a^2} + 6a - 11 > 0 \\
\Rightarrow {(a + 3)^2} > 20 \\
\Rightarrow a + 3 < - 2\sqrt 5 {\text{ or }}a + 3 > 2\sqrt 5 \\
\Rightarrow a < - 3 - 2 - \sqrt 2 {\text{ or a}} > - 3 + 2\sqrt 5 ...eq.(1) \\
\\
$
We had considered earlier, \[D > 0,\]then
$
\dfrac{{ - b}}{{2a}} > 0 \\
\Rightarrow - (a + 1) > 0 \\
\Rightarrow a < - 1...eq.(2) \\
\Rightarrow a(0) \geqslant 0 \\
\Rightarrow - a + 3 \geqslant 0 \\
\Rightarrow a \leqslant 3...eq.(3) \\
$
From \[eq.\left( 1 \right),{\text{ }}\left( 2 \right)\] and \[\left( 3 \right),\] we get
$ a \in ( - \infty , - 3 - 2\sqrt 5 ) $
So, from both the cases, we get
$ \alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) $ $ $
Hence, option (C), $ \alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) $ is correct.
So, the correct answer is “Option C”.
Note: In the question, we have been given a quadratic equation. The standard form of quadratic equation is \[a{x^2} + bx + c = 0.\]
Discriminant, \[\;D{\text{ }} = {\text{ }}{b^2} - 4ac\]
The value of D tells us the kind of root equation has. If \[D > 0,\]then the equation has two distinct roots.
If \[D = 0,\] then the equation has one real root.
If \[D < 0,\] then the equation has no real roots, i.e., two imaginary roots will form.
Complete step-by-step answer:
We have been given an inequality \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] and we need to find the value of a for which the inequality is true for at least one $ x \in (0,\dfrac{\pi }{2}) $ .
\[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] for at least one $ x \in (0,\dfrac{\pi }{2}) $ .
Now, let \[\cot x{\text{ }} = {\text{ }}t\]
We know that, $ \cot 0 = \infty $ and $ \cot \dfrac{\pi }{2} = 0 $
Since, $ x \in (0,\dfrac{\pi }{2}) $ , therefore, on putting $ \cot 0 = \infty $ and $ \cot \dfrac{\pi }{2} = 0 $ , we get $ t \in (0,\infty ) $
Now on putting the value \[\cot x{\text{ }} = {\text{ }}t\], we get our above equation \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] in the form $ {t^2} + (a + 1)t - (a - 3) < 0. $
Now, let $ f(t) = {t^2} + (a + 1)t - (a - 3) < 0 $ , for at least one $ t \in (0,\infty ) $
So, we have two following possibilities for f(t). Let us see the cases mentioned below.
Case 1:
$
f(0) < 0 \\
f(0) = - (a - 3) < 0 \\
= - a + 3 < 0 \\
= - a < - 3 \\
= a > 3 \\
$
Case 2:
We have been given a quadratic equation, so, we will consider, \[D > {\text{ }}0\], i.e., the equation will have distinct roots.
$ i.e.,{b^2} - 4ac > 0 $
$
\Rightarrow {(a + 1)^2} + 4(a - 3) > 0 \\
\Rightarrow {a^2} + 6a - 11 > 0 \\
\Rightarrow {(a + 3)^2} > 20 \\
\Rightarrow a + 3 < - 2\sqrt 5 {\text{ or }}a + 3 > 2\sqrt 5 \\
\Rightarrow a < - 3 - 2 - \sqrt 2 {\text{ or a}} > - 3 + 2\sqrt 5 ...eq.(1) \\
\\
$
We had considered earlier, \[D > 0,\]then
$
\dfrac{{ - b}}{{2a}} > 0 \\
\Rightarrow - (a + 1) > 0 \\
\Rightarrow a < - 1...eq.(2) \\
\Rightarrow a(0) \geqslant 0 \\
\Rightarrow - a + 3 \geqslant 0 \\
\Rightarrow a \leqslant 3...eq.(3) \\
$
From \[eq.\left( 1 \right),{\text{ }}\left( 2 \right)\] and \[\left( 3 \right),\] we get
$ a \in ( - \infty , - 3 - 2\sqrt 5 ) $
So, from both the cases, we get
$ \alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) $ $ $
Hence, option (C), $ \alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) $ is correct.
So, the correct answer is “Option C”.
Note: In the question, we have been given a quadratic equation. The standard form of quadratic equation is \[a{x^2} + bx + c = 0.\]
Discriminant, \[\;D{\text{ }} = {\text{ }}{b^2} - 4ac\]
The value of D tells us the kind of root equation has. If \[D > 0,\]then the equation has two distinct roots.
If \[D = 0,\] then the equation has one real root.
If \[D < 0,\] then the equation has no real roots, i.e., two imaginary roots will form.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

