
Find the value of a for which the inequality \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] is true for at least one $ x \in (0,\dfrac{\pi }{2}) $
(A) $ a \in ( - \infty , - 1) $
(B) $ a \in \{ ( - 3, - 2\sqrt 5 ),3\} $
(C) $ \alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) $
(D) None of these
Answer
483.6k+ views
Hint: To solve this question, we will start with assuming \[\cot x{\text{ }} = {\text{ }}t\], then we get our given equation in the form $ {t^2} + (a + 1)t - (a - 3) < 0 $ for at least one $ t \in (0,\infty ) $ . From here we will consider two cases, and then we will get our required answer.
Complete step-by-step answer:
We have been given an inequality \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] and we need to find the value of a for which the inequality is true for at least one $ x \in (0,\dfrac{\pi }{2}) $ .
\[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] for at least one $ x \in (0,\dfrac{\pi }{2}) $ .
Now, let \[\cot x{\text{ }} = {\text{ }}t\]
We know that, $ \cot 0 = \infty $ and $ \cot \dfrac{\pi }{2} = 0 $
Since, $ x \in (0,\dfrac{\pi }{2}) $ , therefore, on putting $ \cot 0 = \infty $ and $ \cot \dfrac{\pi }{2} = 0 $ , we get $ t \in (0,\infty ) $
Now on putting the value \[\cot x{\text{ }} = {\text{ }}t\], we get our above equation \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] in the form $ {t^2} + (a + 1)t - (a - 3) < 0. $
Now, let $ f(t) = {t^2} + (a + 1)t - (a - 3) < 0 $ , for at least one $ t \in (0,\infty ) $
So, we have two following possibilities for f(t). Let us see the cases mentioned below.
Case 1:
$
f(0) < 0 \\
f(0) = - (a - 3) < 0 \\
= - a + 3 < 0 \\
= - a < - 3 \\
= a > 3 \\
$
Case 2:
We have been given a quadratic equation, so, we will consider, \[D > {\text{ }}0\], i.e., the equation will have distinct roots.
$ i.e.,{b^2} - 4ac > 0 $
$
\Rightarrow {(a + 1)^2} + 4(a - 3) > 0 \\
\Rightarrow {a^2} + 6a - 11 > 0 \\
\Rightarrow {(a + 3)^2} > 20 \\
\Rightarrow a + 3 < - 2\sqrt 5 {\text{ or }}a + 3 > 2\sqrt 5 \\
\Rightarrow a < - 3 - 2 - \sqrt 2 {\text{ or a}} > - 3 + 2\sqrt 5 ...eq.(1) \\
\\
$
We had considered earlier, \[D > 0,\]then
$
\dfrac{{ - b}}{{2a}} > 0 \\
\Rightarrow - (a + 1) > 0 \\
\Rightarrow a < - 1...eq.(2) \\
\Rightarrow a(0) \geqslant 0 \\
\Rightarrow - a + 3 \geqslant 0 \\
\Rightarrow a \leqslant 3...eq.(3) \\
$
From \[eq.\left( 1 \right),{\text{ }}\left( 2 \right)\] and \[\left( 3 \right),\] we get
$ a \in ( - \infty , - 3 - 2\sqrt 5 ) $
So, from both the cases, we get
$ \alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) $ $ $
Hence, option (C), $ \alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) $ is correct.
So, the correct answer is “Option C”.
Note: In the question, we have been given a quadratic equation. The standard form of quadratic equation is \[a{x^2} + bx + c = 0.\]
Discriminant, \[\;D{\text{ }} = {\text{ }}{b^2} - 4ac\]
The value of D tells us the kind of root equation has. If \[D > 0,\]then the equation has two distinct roots.
If \[D = 0,\] then the equation has one real root.
If \[D < 0,\] then the equation has no real roots, i.e., two imaginary roots will form.
Complete step-by-step answer:
We have been given an inequality \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] and we need to find the value of a for which the inequality is true for at least one $ x \in (0,\dfrac{\pi }{2}) $ .
\[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] for at least one $ x \in (0,\dfrac{\pi }{2}) $ .
Now, let \[\cot x{\text{ }} = {\text{ }}t\]
We know that, $ \cot 0 = \infty $ and $ \cot \dfrac{\pi }{2} = 0 $
Since, $ x \in (0,\dfrac{\pi }{2}) $ , therefore, on putting $ \cot 0 = \infty $ and $ \cot \dfrac{\pi }{2} = 0 $ , we get $ t \in (0,\infty ) $
Now on putting the value \[\cot x{\text{ }} = {\text{ }}t\], we get our above equation \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0,\] in the form $ {t^2} + (a + 1)t - (a - 3) < 0. $
Now, let $ f(t) = {t^2} + (a + 1)t - (a - 3) < 0 $ , for at least one $ t \in (0,\infty ) $
So, we have two following possibilities for f(t). Let us see the cases mentioned below.
Case 1:
$
f(0) < 0 \\
f(0) = - (a - 3) < 0 \\
= - a + 3 < 0 \\
= - a < - 3 \\
= a > 3 \\
$
Case 2:
We have been given a quadratic equation, so, we will consider, \[D > {\text{ }}0\], i.e., the equation will have distinct roots.
$ i.e.,{b^2} - 4ac > 0 $
$
\Rightarrow {(a + 1)^2} + 4(a - 3) > 0 \\
\Rightarrow {a^2} + 6a - 11 > 0 \\
\Rightarrow {(a + 3)^2} > 20 \\
\Rightarrow a + 3 < - 2\sqrt 5 {\text{ or }}a + 3 > 2\sqrt 5 \\
\Rightarrow a < - 3 - 2 - \sqrt 2 {\text{ or a}} > - 3 + 2\sqrt 5 ...eq.(1) \\
\\
$
We had considered earlier, \[D > 0,\]then
$
\dfrac{{ - b}}{{2a}} > 0 \\
\Rightarrow - (a + 1) > 0 \\
\Rightarrow a < - 1...eq.(2) \\
\Rightarrow a(0) \geqslant 0 \\
\Rightarrow - a + 3 \geqslant 0 \\
\Rightarrow a \leqslant 3...eq.(3) \\
$
From \[eq.\left( 1 \right),{\text{ }}\left( 2 \right)\] and \[\left( 3 \right),\] we get
$ a \in ( - \infty , - 3 - 2\sqrt 5 ) $
So, from both the cases, we get
$ \alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) $ $ $
Hence, option (C), $ \alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) $ is correct.
So, the correct answer is “Option C”.
Note: In the question, we have been given a quadratic equation. The standard form of quadratic equation is \[a{x^2} + bx + c = 0.\]
Discriminant, \[\;D{\text{ }} = {\text{ }}{b^2} - 4ac\]
The value of D tells us the kind of root equation has. If \[D > 0,\]then the equation has two distinct roots.
If \[D = 0,\] then the equation has one real root.
If \[D < 0,\] then the equation has no real roots, i.e., two imaginary roots will form.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

Number of valence electrons in Chlorine ion are a 16 class 11 chemistry CBSE

What is the modal class for the following table given class 11 maths CBSE

How much is 23 kg in pounds class 11 chemistry CBSE
