
Find the value of a for which the function f defined by $f\left( x \right)=\left\{ \begin{matrix}
a\sin \left( \dfrac{\pi }{2}\left( x+1 \right) \right),x\le 0 \\
\dfrac{\tan x-\sin x}{{{x}^{3}}},x>0 \\
\end{matrix} \right.$ is continuous at x = 0.
[a] $\dfrac{1}{2}$
[b] $\dfrac{-1}{2}$
[c] 2
[d] -2
Answer
587.4k+ views
Hint: Use the fact that if f(x) is continuous at $x={{x}_{0}}$, then $\displaystyle \lim_{x \to x_{0}^{+}}f\left( x \right)=\displaystyle \lim_{x \to x_{0}^{+}}f\left( x \right)=f\left( 0 \right)$. Hence prove that $a=\displaystyle \lim_{x \to 0}\dfrac{\tan x-\sin x}{{{x}^{3}}}$. Use the fact that $\tan x=\dfrac{\sin x}{\cos x}$ and hence prove that \[a=\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}\times \dfrac{1-\cos x}{{{x}^{2}}}\times \dfrac{1}{\cos x}\]. Use the fact that if $\displaystyle \lim_{x \to {{x}_{0}}}f\left( x \right)=l$ and $\displaystyle \lim_{x \to {{x}_{0}}}g\left( x \right)=m$, then $\displaystyle \lim_{x \to {{x}_{0}}}f\left( x \right)g\left( x \right)=ml$. Hence determine the value of $\displaystyle \lim_{x \to 0}\dfrac{\tan x-\sin x}{{{x}^{3}}}$. Use the results $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$ and $\displaystyle \lim_{x \to 0}\dfrac{1-\cos x}{{{x}^{2}}}=\dfrac{1}{2}$. Hence find the value of a.
Complete step by step answer:
We have
$f\left( x \right)=\left\{ \begin{matrix}
a\sin \left( \dfrac{\pi }{2}\left( x+1 \right) \right),x\le 0 \\
\dfrac{\tan x-\sin x}{{{x}^{3}}},x>0 \\
\end{matrix} \right.$ is continuous at x = 0.
We know that if f(x) is continuous at $x={{x}_{0}}$, then $\displaystyle \lim_{x \to x_{0}^{+}}f\left( x \right)=\displaystyle \lim_{x \to x_{0}^{+}}f\left( x \right)=f\left( 0 \right)$.
Hence, we have
$\displaystyle \lim_{x \to {{0}^{+}}}f\left( x \right)=f\left( 0 \right)=a\sin \left( \dfrac{\pi }{2} \right)=a$
Hence, we have
$a=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\tan x-\sin x}{{{x}^{3}}}$
We know that $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{h\to 0}f\left( a+h \right)$
Hence, we have
$a=\displaystyle \lim_{h\to 0}\dfrac{\tan \left( h \right)-\sin \left( h \right)}{{{h}^{3}}}$
We know that $\tan \left( h \right)=\dfrac{\sin \left( h \right)}{\cos \left( h \right)}$
Hence, we have
$a=\displaystyle \lim_{h\to 0}\dfrac{\dfrac{\sin \left( h \right)}{\cos \left( h \right)}-\sin \left( h \right)}{{{h}^{3}}}$
Multiplying numerator and denominator by $\cos \left( h \right)$, we get
\[a=\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)-\cos \left( h \right)\sin \left( h \right)}{{{h}^{3}}\cos \left( h \right)}\]
Taking $\sin \left( h \right)$ common from the terms in numerator, we get
$a=\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)\left( 1-\cos \left( h \right) \right)}{{{h}^{3}}\cos \left( h \right)}$
Writing ${{h}^{3}}$ as ${{h}^{2}}h$, we get
$a=\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)\left( 1-\cos \left( h \right) \right)}{h\times {{h}^{2}}\cos \left( h \right)}$
We know that $\dfrac{ab}{cd}=\dfrac{a}{c}\times \dfrac{b}{d}$
Hence, we have
$a=\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)}{h}\times \dfrac{1-\cos \left( h \right)}{{{h}^{2}}}\times \dfrac{1}{\cos \left( h \right)}$
We know that $\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)}{h}=1$
We know that $1-\cos \left( h \right)=2{{\sin }^{2}}\left( \dfrac{h}{2} \right)$
Hence, we have $\dfrac{1-\cos \left( h \right)}{{{h}^{2}}}=\dfrac{2{{\sin }^{2}}\left( \dfrac{h}{2} \right)}{{{h}^{2}}}=2{{\left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{h} \right)}^{2}}$
Dividing numerator and denominator of the squared term by 2, we get
$\dfrac{1-\cos \left( h \right)}{{{h}^{2}}}=2{{\left( \dfrac{1}{2}\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)}^{2}}=\dfrac{1}{2}{{\left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}} \right)}^{2}}$
Hence, we have
\[\displaystyle \lim_{h\to 0}\dfrac{1-\cos \left( h \right)}{{{h}^{2}}}=\dfrac{1}{2}\left( \displaystyle \lim_{h\to 0}\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}} \right)=\dfrac{1}{2}\]
Also, we have $\displaystyle \lim_{h\to 0}\cos \left( h \right)=1\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{1}{\cos \left( h \right)}=\dfrac{1}{1}=1$
We know that if $\displaystyle \lim_{x \to {{x}_{0}}}f\left( x \right)=l$ and $\displaystyle \lim_{x \to {{x}_{0}}}g\left( x \right)=m$, then $\displaystyle \lim_{x \to {{x}_{0}}}f\left( x \right)g\left( x \right)=ml$
Hence, we have
$a=\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)}{h}\times \displaystyle \lim_{h\to 0}\dfrac{1-\cos \left( h \right)}{{{h}^{2}}}\times \displaystyle \lim_{h\to 0}\dfrac{1}{\cos \left( h \right)}=\dfrac{1}{2}$
Hence the value of a is $\dfrac{1}{2}$
Hence option [a] is correct.
Note:
[1] Alternatively we can evaluate the limit using the series expansions of tanx and sinx.
We know that $\sin x=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}+O\left( {{x}^{7}} \right)$ and $\tan x=x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+O\left( {{x}^{7}} \right)$
Hence, we have
$\begin{align}
& \tan x-\sin x=x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}-x+\dfrac{{{x}^{3}}}{6}-\dfrac{{{x}^{5}}}{120}+O\left( {{x}^{7}} \right) \\
& =\dfrac{{{x}^{3}}}{2}+\dfrac{23{{x}^{5}}}{120}+O\left( {{x}^{7}} \right) \\
\end{align}$
Hence, we have
$\dfrac{\tan x-\sin x}{{{x}^{3}}}=\dfrac{\dfrac{{{x}^{3}}}{2}+\dfrac{23{{x}^{5}}}{120}+O\left( {{x}^{7}} \right)}{{{x}^{3}}}$
We know that $\dfrac{a+c}{b}=\dfrac{a}{b}+\dfrac{c}{b}$.
Using the above identity, we get
$\dfrac{\tan x-\sin x}{{{x}^{3}}}=\dfrac{{{x}^{3}}}{2{{x}^{3}}}+\dfrac{23{{x}^{5}}}{120{{x}^{3}}}+\dfrac{O\left( {{x}^{7}} \right)}{{{x}^{3}}}$
We know that $\dfrac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}}$
Hence, we have
$\dfrac{\tan x-\sin x}{{{x}^{3}}}=\dfrac{1}{2}+\dfrac{23}{120}{{x}^{2}}+O\left( {{x}^{4}} \right)$
Hence, we have
$\displaystyle \lim_{x \to 0}\dfrac{\tan x-\sin x}{{{x}^{3}}}=\dfrac{1}{2}+0+0=\dfrac{1}{2}$, which is the same as obtained above.
Hence $a=\dfrac{1}{2}$ and hence option [a] is correct.
Complete step by step answer:
We have
$f\left( x \right)=\left\{ \begin{matrix}
a\sin \left( \dfrac{\pi }{2}\left( x+1 \right) \right),x\le 0 \\
\dfrac{\tan x-\sin x}{{{x}^{3}}},x>0 \\
\end{matrix} \right.$ is continuous at x = 0.
We know that if f(x) is continuous at $x={{x}_{0}}$, then $\displaystyle \lim_{x \to x_{0}^{+}}f\left( x \right)=\displaystyle \lim_{x \to x_{0}^{+}}f\left( x \right)=f\left( 0 \right)$.
Hence, we have
$\displaystyle \lim_{x \to {{0}^{+}}}f\left( x \right)=f\left( 0 \right)=a\sin \left( \dfrac{\pi }{2} \right)=a$
Hence, we have
$a=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{\tan x-\sin x}{{{x}^{3}}}$
We know that $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{h\to 0}f\left( a+h \right)$
Hence, we have
$a=\displaystyle \lim_{h\to 0}\dfrac{\tan \left( h \right)-\sin \left( h \right)}{{{h}^{3}}}$
We know that $\tan \left( h \right)=\dfrac{\sin \left( h \right)}{\cos \left( h \right)}$
Hence, we have
$a=\displaystyle \lim_{h\to 0}\dfrac{\dfrac{\sin \left( h \right)}{\cos \left( h \right)}-\sin \left( h \right)}{{{h}^{3}}}$
Multiplying numerator and denominator by $\cos \left( h \right)$, we get
\[a=\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)-\cos \left( h \right)\sin \left( h \right)}{{{h}^{3}}\cos \left( h \right)}\]
Taking $\sin \left( h \right)$ common from the terms in numerator, we get
$a=\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)\left( 1-\cos \left( h \right) \right)}{{{h}^{3}}\cos \left( h \right)}$
Writing ${{h}^{3}}$ as ${{h}^{2}}h$, we get
$a=\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)\left( 1-\cos \left( h \right) \right)}{h\times {{h}^{2}}\cos \left( h \right)}$
We know that $\dfrac{ab}{cd}=\dfrac{a}{c}\times \dfrac{b}{d}$
Hence, we have
$a=\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)}{h}\times \dfrac{1-\cos \left( h \right)}{{{h}^{2}}}\times \dfrac{1}{\cos \left( h \right)}$
We know that $\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)}{h}=1$
We know that $1-\cos \left( h \right)=2{{\sin }^{2}}\left( \dfrac{h}{2} \right)$
Hence, we have $\dfrac{1-\cos \left( h \right)}{{{h}^{2}}}=\dfrac{2{{\sin }^{2}}\left( \dfrac{h}{2} \right)}{{{h}^{2}}}=2{{\left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{h} \right)}^{2}}$
Dividing numerator and denominator of the squared term by 2, we get
$\dfrac{1-\cos \left( h \right)}{{{h}^{2}}}=2{{\left( \dfrac{1}{2}\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)}^{2}}=\dfrac{1}{2}{{\left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}} \right)}^{2}}$
Hence, we have
\[\displaystyle \lim_{h\to 0}\dfrac{1-\cos \left( h \right)}{{{h}^{2}}}=\dfrac{1}{2}\left( \displaystyle \lim_{h\to 0}\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}} \right)=\dfrac{1}{2}\]
Also, we have $\displaystyle \lim_{h\to 0}\cos \left( h \right)=1\Rightarrow \displaystyle \lim_{h\to 0}\dfrac{1}{\cos \left( h \right)}=\dfrac{1}{1}=1$
We know that if $\displaystyle \lim_{x \to {{x}_{0}}}f\left( x \right)=l$ and $\displaystyle \lim_{x \to {{x}_{0}}}g\left( x \right)=m$, then $\displaystyle \lim_{x \to {{x}_{0}}}f\left( x \right)g\left( x \right)=ml$
Hence, we have
$a=\displaystyle \lim_{h\to 0}\dfrac{\sin \left( h \right)}{h}\times \displaystyle \lim_{h\to 0}\dfrac{1-\cos \left( h \right)}{{{h}^{2}}}\times \displaystyle \lim_{h\to 0}\dfrac{1}{\cos \left( h \right)}=\dfrac{1}{2}$
Hence the value of a is $\dfrac{1}{2}$
Hence option [a] is correct.
Note:
[1] Alternatively we can evaluate the limit using the series expansions of tanx and sinx.
We know that $\sin x=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}+O\left( {{x}^{7}} \right)$ and $\tan x=x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+O\left( {{x}^{7}} \right)$
Hence, we have
$\begin{align}
& \tan x-\sin x=x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}-x+\dfrac{{{x}^{3}}}{6}-\dfrac{{{x}^{5}}}{120}+O\left( {{x}^{7}} \right) \\
& =\dfrac{{{x}^{3}}}{2}+\dfrac{23{{x}^{5}}}{120}+O\left( {{x}^{7}} \right) \\
\end{align}$
Hence, we have
$\dfrac{\tan x-\sin x}{{{x}^{3}}}=\dfrac{\dfrac{{{x}^{3}}}{2}+\dfrac{23{{x}^{5}}}{120}+O\left( {{x}^{7}} \right)}{{{x}^{3}}}$
We know that $\dfrac{a+c}{b}=\dfrac{a}{b}+\dfrac{c}{b}$.
Using the above identity, we get
$\dfrac{\tan x-\sin x}{{{x}^{3}}}=\dfrac{{{x}^{3}}}{2{{x}^{3}}}+\dfrac{23{{x}^{5}}}{120{{x}^{3}}}+\dfrac{O\left( {{x}^{7}} \right)}{{{x}^{3}}}$
We know that $\dfrac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}}$
Hence, we have
$\dfrac{\tan x-\sin x}{{{x}^{3}}}=\dfrac{1}{2}+\dfrac{23}{120}{{x}^{2}}+O\left( {{x}^{4}} \right)$
Hence, we have
$\displaystyle \lim_{x \to 0}\dfrac{\tan x-\sin x}{{{x}^{3}}}=\dfrac{1}{2}+0+0=\dfrac{1}{2}$, which is the same as obtained above.
Hence $a=\dfrac{1}{2}$ and hence option [a] is correct.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

