
Find the value of \[8\left( {{\log }_{\sqrt{x}}}\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}} \right)\] ?
Answer
541.5k+ views
Hint: In the given question, we have been asked to find the value of a given expression. In order to solve the question, first we need to apply the property of logarithm i.e. \[{{\log }_{a}}{{a}^{n}}=n\] later simplifying the expression, we will need to use the laws of exponent of power i.e. \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\] and \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\] . By using these properties we will simplify the expression till we get the value. In this way we will get the required answer.
Complete step-by-step answer:
We have given that:
\[8\left( {{\log }_{\sqrt{x}}}\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}} \right)\]
Using the definition of logarithm which states that,
\[{{\log }_{a}}{{a}^{n}}=n\]
Applying this property of logarithmic function, we will obtain
As we know that \[\sqrt{x}={{x}^{\dfrac{1}{2}}}\]
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x\sqrt{x\sqrt{{{x}^{1}}\cdot {{x}^{\dfrac{1}{2}}}}}} \right)}{{{\log }_{x}}\left( {{x}^{\dfrac{1}{2}}} \right)}\]
Using the laws of exponent and power which states that \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]
Applying this property in the above expression, we will get
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x\sqrt{x\sqrt{{{x}^{\dfrac{3}{2}}}}}} \right)}{\dfrac{1}{2}}\]
Simplifying the above, we get
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x\sqrt{x\cdot {{\left( {{x}^{\dfrac{3}{2}}} \right)}^{\dfrac{1}{2}}}}} \right)}{\dfrac{1}{2}}\]
Using the power property of exponent which states that \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\]
Thus, we get
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x\sqrt{x\cdot {{x}^{\dfrac{3}{4}}}}} \right)}{\dfrac{1}{2}}\]
Again,
Using the laws of exponent and power which states that \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]
Applying this property in the above expression, we will get
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x\sqrt{{{x}^{\dfrac{7}{4}}}}} \right)}{\dfrac{1}{2}}\]
Simplifying the above, we get
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x{{\left( {{x}^{\dfrac{7}{4}}} \right)}^{\dfrac{1}{2}}}} \right)}{\dfrac{1}{2}}=16{{\log }_{x}}\left( \sqrt{x\cdot {{x}^{\dfrac{7}{8}}}} \right)\]
Similarly using the laws of exponent and power, we get
\[\Rightarrow 16{{\log }_{x}}\left( \sqrt{{{x}^{1}}\cdot {{x}^{\dfrac{7}{8}}}} \right)=16{{\log }_{x}}\left( \sqrt{{{x}^{1+\dfrac{7}{8}}}} \right)=16{{\log }_{x}}\left( \sqrt{{{x}^{\dfrac{15}{8}}}} \right)=16{{\log }_{x}}\cdot {{\left( {{x}^{\dfrac{15}{8}}} \right)}^{\dfrac{1}{2}}}\]
Simplifying the above expression, we will get
\[\Rightarrow 16{{\log }_{x}}\cdot {{\left( {{x}^{\dfrac{15}{8}}} \right)}^{\dfrac{1}{2}}}=16{{\log }_{x}}{{x}^{\dfrac{15}{16}}}\]
Using the definition of logarithm which states that,
\[{{\log }_{a}}{{a}^{n}}=n\]
Applying this property of logarithmic function, we will obtain
We have, \[{{\log }_{x}}{{x}^{\dfrac{15}{16}}}\] which is equal to \[\dfrac{15}{16}\]
Thus,
\[\Rightarrow 16{{\log }_{x}}{{x}^{\dfrac{15}{16}}}=16\times \dfrac{15}{16}=15\]
Therefore,
\[\Rightarrow 8\left( {{\log }_{\sqrt{x}}}\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}} \right)=15\]
Hence, this is the required answer.
Note: While solving these types of questions, it is necessary that students must need to know about the basic properties of logarithmic function. They should also be very aware about the laws of exponent and power which helps while solving the powers and exponents and the given question. You should be very careful while doing the calculation to avoid making any error.
Complete step-by-step answer:
We have given that:
\[8\left( {{\log }_{\sqrt{x}}}\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}} \right)\]
Using the definition of logarithm which states that,
\[{{\log }_{a}}{{a}^{n}}=n\]
Applying this property of logarithmic function, we will obtain
As we know that \[\sqrt{x}={{x}^{\dfrac{1}{2}}}\]
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x\sqrt{x\sqrt{{{x}^{1}}\cdot {{x}^{\dfrac{1}{2}}}}}} \right)}{{{\log }_{x}}\left( {{x}^{\dfrac{1}{2}}} \right)}\]
Using the laws of exponent and power which states that \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]
Applying this property in the above expression, we will get
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x\sqrt{x\sqrt{{{x}^{\dfrac{3}{2}}}}}} \right)}{\dfrac{1}{2}}\]
Simplifying the above, we get
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x\sqrt{x\cdot {{\left( {{x}^{\dfrac{3}{2}}} \right)}^{\dfrac{1}{2}}}}} \right)}{\dfrac{1}{2}}\]
Using the power property of exponent which states that \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}\]
Thus, we get
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x\sqrt{x\cdot {{x}^{\dfrac{3}{4}}}}} \right)}{\dfrac{1}{2}}\]
Again,
Using the laws of exponent and power which states that \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]
Applying this property in the above expression, we will get
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x\sqrt{{{x}^{\dfrac{7}{4}}}}} \right)}{\dfrac{1}{2}}\]
Simplifying the above, we get
\[\Rightarrow 8\dfrac{{{\log }_{x}}\left( \sqrt{x{{\left( {{x}^{\dfrac{7}{4}}} \right)}^{\dfrac{1}{2}}}} \right)}{\dfrac{1}{2}}=16{{\log }_{x}}\left( \sqrt{x\cdot {{x}^{\dfrac{7}{8}}}} \right)\]
Similarly using the laws of exponent and power, we get
\[\Rightarrow 16{{\log }_{x}}\left( \sqrt{{{x}^{1}}\cdot {{x}^{\dfrac{7}{8}}}} \right)=16{{\log }_{x}}\left( \sqrt{{{x}^{1+\dfrac{7}{8}}}} \right)=16{{\log }_{x}}\left( \sqrt{{{x}^{\dfrac{15}{8}}}} \right)=16{{\log }_{x}}\cdot {{\left( {{x}^{\dfrac{15}{8}}} \right)}^{\dfrac{1}{2}}}\]
Simplifying the above expression, we will get
\[\Rightarrow 16{{\log }_{x}}\cdot {{\left( {{x}^{\dfrac{15}{8}}} \right)}^{\dfrac{1}{2}}}=16{{\log }_{x}}{{x}^{\dfrac{15}{16}}}\]
Using the definition of logarithm which states that,
\[{{\log }_{a}}{{a}^{n}}=n\]
Applying this property of logarithmic function, we will obtain
We have, \[{{\log }_{x}}{{x}^{\dfrac{15}{16}}}\] which is equal to \[\dfrac{15}{16}\]
Thus,
\[\Rightarrow 16{{\log }_{x}}{{x}^{\dfrac{15}{16}}}=16\times \dfrac{15}{16}=15\]
Therefore,
\[\Rightarrow 8\left( {{\log }_{\sqrt{x}}}\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}} \right)=15\]
Hence, this is the required answer.
Note: While solving these types of questions, it is necessary that students must need to know about the basic properties of logarithmic function. They should also be very aware about the laws of exponent and power which helps while solving the powers and exponents and the given question. You should be very careful while doing the calculation to avoid making any error.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

