
Find the value of $4{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)=$
1. $\dfrac{\pi }{2}$
2. $\dfrac{\pi }{3}$
3. $\dfrac{\pi }{4}$
4. None of these
Answer
495.9k+ views
Hint: To find the value of the given expression we will use the trigonometric formula related to the tangent function. We will use following formulas in order to solve the given expression
$2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$
${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$
Complete step by step answer:
We have been given an expression $4{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)$.
We have to find the value of the given expression.
First we will rearrange the terms of the given expression. Then we will get
$\Rightarrow 2\left[ 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)$
Now, we know that $2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$.
Now, applying the formula to the above obtained equation we will get
\[\Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{25-1}{25} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{24}{25} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{5}{12} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
\end{align}\]
Now, again applying the formula $2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$ we will get
\[\Rightarrow \left[ {{\tan }^{-1}}\dfrac{2\left( \dfrac{5}{12} \right)}{1-{{\left( \dfrac{5}{12} \right)}^{2}}} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{5}{6} \right)}{\left( \dfrac{144-25}{144} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{5}{6} \right)}{\left( \dfrac{119}{144} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
\end{align}\]
Now, we know that ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$
Now, applying the above formula to the obtained equation we will get
\[\Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{99}-\dfrac{1}{70}}{1+\dfrac{1}{99}\times \dfrac{1}{70}} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{70-99}{6930}}{1+\dfrac{1}{6930}} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{-29}{6930}}{\dfrac{6930+1}{6930}} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{-29}{6931} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{120}{119} \right)-{{\tan }^{-1}}\left( \dfrac{29}{6931} \right) \\
\end{align}\]
Now, again applying the formula ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$ to the above obtained equation we will get
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{120}{119}-\dfrac{29}{6931}}{1+\dfrac{120}{119}\times \dfrac{29}{6931}} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{120\times 6931-29\times 119}{119\times 6931}}{1+\dfrac{120\times 29}{119\times 6931}} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{831720-3451}{824809+3480} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{828269}{828269} \right) \\
& \Rightarrow {{\tan }^{-1}}(1) \\
& \Rightarrow \dfrac{\pi }{4} \\
\end{align}\]
Hence above is the required value of the given expression.
So, the correct answer is “Option 3”.
Note: To solve such types of questions students must know the basic concepts of trigonometry. As the calculation is lengthy in this particular question so please avoid calculation mistakes. We can also simplify the numbers by multiplying or dividing. We can simplify the numbers so that the calculation becomes easy.
$2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$
${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$
Complete step by step answer:
We have been given an expression $4{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)$.
We have to find the value of the given expression.
First we will rearrange the terms of the given expression. Then we will get
$\Rightarrow 2\left[ 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)$
Now, we know that $2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$.
Now, applying the formula to the above obtained equation we will get
\[\Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{25-1}{25} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{24}{25} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{5}{12} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
\end{align}\]
Now, again applying the formula $2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$ we will get
\[\Rightarrow \left[ {{\tan }^{-1}}\dfrac{2\left( \dfrac{5}{12} \right)}{1-{{\left( \dfrac{5}{12} \right)}^{2}}} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{5}{6} \right)}{\left( \dfrac{144-25}{144} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{5}{6} \right)}{\left( \dfrac{119}{144} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
\end{align}\]
Now, we know that ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$
Now, applying the above formula to the obtained equation we will get
\[\Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{99}-\dfrac{1}{70}}{1+\dfrac{1}{99}\times \dfrac{1}{70}} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{70-99}{6930}}{1+\dfrac{1}{6930}} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{-29}{6930}}{\dfrac{6930+1}{6930}} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{-29}{6931} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{120}{119} \right)-{{\tan }^{-1}}\left( \dfrac{29}{6931} \right) \\
\end{align}\]
Now, again applying the formula ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$ to the above obtained equation we will get
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{120}{119}-\dfrac{29}{6931}}{1+\dfrac{120}{119}\times \dfrac{29}{6931}} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{120\times 6931-29\times 119}{119\times 6931}}{1+\dfrac{120\times 29}{119\times 6931}} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{831720-3451}{824809+3480} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{828269}{828269} \right) \\
& \Rightarrow {{\tan }^{-1}}(1) \\
& \Rightarrow \dfrac{\pi }{4} \\
\end{align}\]
Hence above is the required value of the given expression.
So, the correct answer is “Option 3”.
Note: To solve such types of questions students must know the basic concepts of trigonometry. As the calculation is lengthy in this particular question so please avoid calculation mistakes. We can also simplify the numbers by multiplying or dividing. We can simplify the numbers so that the calculation becomes easy.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

