
Find the value of $4{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)=$
1. $\dfrac{\pi }{2}$
2. $\dfrac{\pi }{3}$
3. $\dfrac{\pi }{4}$
4. None of these
Answer
414.6k+ views
Hint: To find the value of the given expression we will use the trigonometric formula related to the tangent function. We will use following formulas in order to solve the given expression
$2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$
${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$
Complete step by step answer:
We have been given an expression $4{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)$.
We have to find the value of the given expression.
First we will rearrange the terms of the given expression. Then we will get
$\Rightarrow 2\left[ 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)$
Now, we know that $2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$.
Now, applying the formula to the above obtained equation we will get
\[\Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{25-1}{25} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{24}{25} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{5}{12} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
\end{align}\]
Now, again applying the formula $2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$ we will get
\[\Rightarrow \left[ {{\tan }^{-1}}\dfrac{2\left( \dfrac{5}{12} \right)}{1-{{\left( \dfrac{5}{12} \right)}^{2}}} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{5}{6} \right)}{\left( \dfrac{144-25}{144} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{5}{6} \right)}{\left( \dfrac{119}{144} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
\end{align}\]
Now, we know that ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$
Now, applying the above formula to the obtained equation we will get
\[\Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{99}-\dfrac{1}{70}}{1+\dfrac{1}{99}\times \dfrac{1}{70}} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{70-99}{6930}}{1+\dfrac{1}{6930}} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{-29}{6930}}{\dfrac{6930+1}{6930}} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{-29}{6931} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{120}{119} \right)-{{\tan }^{-1}}\left( \dfrac{29}{6931} \right) \\
\end{align}\]
Now, again applying the formula ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$ to the above obtained equation we will get
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{120}{119}-\dfrac{29}{6931}}{1+\dfrac{120}{119}\times \dfrac{29}{6931}} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{120\times 6931-29\times 119}{119\times 6931}}{1+\dfrac{120\times 29}{119\times 6931}} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{831720-3451}{824809+3480} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{828269}{828269} \right) \\
& \Rightarrow {{\tan }^{-1}}(1) \\
& \Rightarrow \dfrac{\pi }{4} \\
\end{align}\]
Hence above is the required value of the given expression.
So, the correct answer is “Option 3”.
Note: To solve such types of questions students must know the basic concepts of trigonometry. As the calculation is lengthy in this particular question so please avoid calculation mistakes. We can also simplify the numbers by multiplying or dividing. We can simplify the numbers so that the calculation becomes easy.
$2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$
${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$
Complete step by step answer:
We have been given an expression $4{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)$.
We have to find the value of the given expression.
First we will rearrange the terms of the given expression. Then we will get
$\Rightarrow 2\left[ 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)$
Now, we know that $2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$.
Now, applying the formula to the above obtained equation we will get
\[\Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{25-1}{25} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{24}{25} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{5}{12} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
\end{align}\]
Now, again applying the formula $2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$ we will get
\[\Rightarrow \left[ {{\tan }^{-1}}\dfrac{2\left( \dfrac{5}{12} \right)}{1-{{\left( \dfrac{5}{12} \right)}^{2}}} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{5}{6} \right)}{\left( \dfrac{144-25}{144} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{5}{6} \right)}{\left( \dfrac{119}{144} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\
\end{align}\]
Now, we know that ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$
Now, applying the above formula to the obtained equation we will get
\[\Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{99}-\dfrac{1}{70}}{1+\dfrac{1}{99}\times \dfrac{1}{70}} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{70-99}{6930}}{1+\dfrac{1}{6930}} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{-29}{6930}}{\dfrac{6930+1}{6930}} \right) \\
& \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{-29}{6931} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{120}{119} \right)-{{\tan }^{-1}}\left( \dfrac{29}{6931} \right) \\
\end{align}\]
Now, again applying the formula ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$ to the above obtained equation we will get
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{120}{119}-\dfrac{29}{6931}}{1+\dfrac{120}{119}\times \dfrac{29}{6931}} \right)\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{120\times 6931-29\times 119}{119\times 6931}}{1+\dfrac{120\times 29}{119\times 6931}} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{831720-3451}{824809+3480} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{828269}{828269} \right) \\
& \Rightarrow {{\tan }^{-1}}(1) \\
& \Rightarrow \dfrac{\pi }{4} \\
\end{align}\]
Hence above is the required value of the given expression.
So, the correct answer is “Option 3”.
Note: To solve such types of questions students must know the basic concepts of trigonometry. As the calculation is lengthy in this particular question so please avoid calculation mistakes. We can also simplify the numbers by multiplying or dividing. We can simplify the numbers so that the calculation becomes easy.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE
