
Find the value of $1-\sin {{10}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}$. \[\]
Answer
569.4k+ views
Hint: We use the reduction formula for complementary angles $\theta ,{{90}^{\circ }}-\theta $ that is $\cos \theta =\sin \left( 90-\theta \right)$ for $\theta ={{40}^{\circ }},{{20}^{\circ }}$ to convert the sines into cosines. We use the sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ by multiplying and dividing $2\cos {{10}^{\circ }}$ with the second term and simplify until we get only term in the numerator in sine where we use $\cos \theta =\sin \left( 90-\theta \right)$ to get the answer. \[\]
Complete step by step answer:
We know that in a right-angled triangle the side opposite to the right-angled triangle is called hypotenuse denoted as $h$, the vertical side is called perpendicular denoted as $p$ and the horizontal side is called the base denoted as $b$.\[\]
We know from the trigonometric ratios in a right-angled triangle the sine of any angle is given by the ratio of the side opposite to the angle to the hypotenuse. In the figure, the sine of the angle $\theta $ is given by
\[\sin \theta =\dfrac{p}{h}\]
We are asked to find the value of $1-\sin {{10}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}$ in the question. Let use the reduction formula for complementary angles $\theta ,{{90}^{\circ }}-\theta $ that is $\cos \theta =\sin \left( 90-\theta \right)$ for $\theta ={{40}^{\circ }},{{20}^{\circ }}$ to have;
\[\begin{align}
& \Rightarrow 1-\sin {{10}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }} \\
& \Rightarrow 1-\sin {{10}^{\circ }}\sin \left( {{90}^{\circ }}-{{40}^{\circ }} \right)\sin \left( {{90}^{\circ }}-{{20}^{\circ }} \right) \\
& \Rightarrow 1-\sin {{10}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }} \\
\end{align}\]
We multiply and divide $2\cos {{10}^{\circ }}$ with the second term in the above step to have;
\[\begin{align}
& \Rightarrow 1-\dfrac{2\sin {{10}^{\circ }}\cos {{10}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }}}{2\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\left( 2\sin {{10}^{\circ }}\cos {{10}^{\circ }} \right)\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }}}{2\cos {{10}^{\circ }}} \\
\end{align}\]
We use the sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta ={{10}^{\circ }}$ in the above step to have ;
\[\begin{align}
& \Rightarrow 1-\dfrac{\sin {{\left( 2\times 10 \right)}^{\circ }}\cos {{20}^{\circ }}\cos {{40}^{\circ }}}{2\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\sin {{20}^{\circ }}\cos {{20}^{\circ }}\cos {{40}^{\circ }}}{2\cos {{10}^{\circ }}} \\
\end{align}\]
We multiply 2 in the numerator and denominator of the second term in the above step to have;
\[\begin{align}
& \Rightarrow 1-\dfrac{2\sin {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }}}{2\times 2\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\left( 2\sin {{20}^{\circ }}\cos {{40}^{\circ }} \right)\cos {{20}^{\circ }}}{4\cos {{10}^{\circ }}} \\
\end{align}\]
We use the sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta ={{20}^{\circ }}$ in the above step to have;
\[\begin{align}
& \Rightarrow 1-\dfrac{2\sin {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }}}{2\times 2\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\sin \left( 2\times {{20}^{\circ }} \right)\cos {{40}^{\circ }}}{4\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\sin {{40}^{\circ }}\cos {{40}^{\circ }}}{4\cos {{10}^{\circ }}} \\
\end{align}\]
We multiply 2 in the numerator and denominator of the second term in the above step to have;
\[\begin{align}
& \Rightarrow 1-\dfrac{2\sin {{40}^{\circ }}\cos {{40}^{\circ }}}{2\times 4\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{2\sin {{40}^{\circ }}\cos {{40}^{\circ }}}{8\cos {{10}^{\circ }}} \\
\end{align}\]
We use the sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta ={{40}^{\circ }}$ in the above step to have;
\[\begin{align}
& \Rightarrow 1-\dfrac{\sin {{\left( 2\times 40 \right)}^{\circ }}}{2\times 4\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\sin {{80}^{\circ }}}{8\cos {{10}^{\circ }}} \\
\end{align}\]
We use the reduction formula of complimentary angles $\cos \theta =\sin \left( 90{}^{\circ }-\theta \right)$ for $\theta ={{10}^{\circ }}$in the above step to have
\[\begin{align}
& \Rightarrow 1-\dfrac{\sin \left( {{90}^{\circ }}-{{10}^{\circ }} \right)}{8\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\cos {{10}^{\circ }}}{8\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{1}{8}=\dfrac{8-1}{8}=\dfrac{7}{8} \\
\end{align}\]
So the obtained value of $1-\sin {{10}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}$ is $\dfrac{7}{8}$. \[\]
Note:
We can alternatively solve using product of sines formula in terms cosine difference and sum of angles as $\sin A\sin B=\dfrac{1}{2}\left[ \cos \left( A-B \right)-\cos \left( A+B \right) \right]$ and then proceed to use again product of sine and cosine$\sin A\cos B=\dfrac{1}{2}\left[ \sin \left( A+B \right)-\sin \left( A-B \right) \right]$. We can also quickly find the answer if we know the formula $\sin A\sin \left( {{60}^{\circ }}-A \right)\sin \left( {{60}^{\circ }}+A \right)=\dfrac{1}{4}\sin 3A$ and use it for $A={{10}^{\circ }}$.
Complete step by step answer:
We know that in a right-angled triangle the side opposite to the right-angled triangle is called hypotenuse denoted as $h$, the vertical side is called perpendicular denoted as $p$ and the horizontal side is called the base denoted as $b$.\[\]
We know from the trigonometric ratios in a right-angled triangle the sine of any angle is given by the ratio of the side opposite to the angle to the hypotenuse. In the figure, the sine of the angle $\theta $ is given by
\[\sin \theta =\dfrac{p}{h}\]
We are asked to find the value of $1-\sin {{10}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}$ in the question. Let use the reduction formula for complementary angles $\theta ,{{90}^{\circ }}-\theta $ that is $\cos \theta =\sin \left( 90-\theta \right)$ for $\theta ={{40}^{\circ }},{{20}^{\circ }}$ to have;
\[\begin{align}
& \Rightarrow 1-\sin {{10}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }} \\
& \Rightarrow 1-\sin {{10}^{\circ }}\sin \left( {{90}^{\circ }}-{{40}^{\circ }} \right)\sin \left( {{90}^{\circ }}-{{20}^{\circ }} \right) \\
& \Rightarrow 1-\sin {{10}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }} \\
\end{align}\]
We multiply and divide $2\cos {{10}^{\circ }}$ with the second term in the above step to have;
\[\begin{align}
& \Rightarrow 1-\dfrac{2\sin {{10}^{\circ }}\cos {{10}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }}}{2\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\left( 2\sin {{10}^{\circ }}\cos {{10}^{\circ }} \right)\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }}}{2\cos {{10}^{\circ }}} \\
\end{align}\]
We use the sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta ={{10}^{\circ }}$ in the above step to have ;
\[\begin{align}
& \Rightarrow 1-\dfrac{\sin {{\left( 2\times 10 \right)}^{\circ }}\cos {{20}^{\circ }}\cos {{40}^{\circ }}}{2\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\sin {{20}^{\circ }}\cos {{20}^{\circ }}\cos {{40}^{\circ }}}{2\cos {{10}^{\circ }}} \\
\end{align}\]
We multiply 2 in the numerator and denominator of the second term in the above step to have;
\[\begin{align}
& \Rightarrow 1-\dfrac{2\sin {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }}}{2\times 2\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\left( 2\sin {{20}^{\circ }}\cos {{40}^{\circ }} \right)\cos {{20}^{\circ }}}{4\cos {{10}^{\circ }}} \\
\end{align}\]
We use the sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta ={{20}^{\circ }}$ in the above step to have;
\[\begin{align}
& \Rightarrow 1-\dfrac{2\sin {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }}}{2\times 2\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\sin \left( 2\times {{20}^{\circ }} \right)\cos {{40}^{\circ }}}{4\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\sin {{40}^{\circ }}\cos {{40}^{\circ }}}{4\cos {{10}^{\circ }}} \\
\end{align}\]
We multiply 2 in the numerator and denominator of the second term in the above step to have;
\[\begin{align}
& \Rightarrow 1-\dfrac{2\sin {{40}^{\circ }}\cos {{40}^{\circ }}}{2\times 4\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{2\sin {{40}^{\circ }}\cos {{40}^{\circ }}}{8\cos {{10}^{\circ }}} \\
\end{align}\]
We use the sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta ={{40}^{\circ }}$ in the above step to have;
\[\begin{align}
& \Rightarrow 1-\dfrac{\sin {{\left( 2\times 40 \right)}^{\circ }}}{2\times 4\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\sin {{80}^{\circ }}}{8\cos {{10}^{\circ }}} \\
\end{align}\]
We use the reduction formula of complimentary angles $\cos \theta =\sin \left( 90{}^{\circ }-\theta \right)$ for $\theta ={{10}^{\circ }}$in the above step to have
\[\begin{align}
& \Rightarrow 1-\dfrac{\sin \left( {{90}^{\circ }}-{{10}^{\circ }} \right)}{8\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{\cos {{10}^{\circ }}}{8\cos {{10}^{\circ }}} \\
& \Rightarrow 1-\dfrac{1}{8}=\dfrac{8-1}{8}=\dfrac{7}{8} \\
\end{align}\]
So the obtained value of $1-\sin {{10}^{\circ }}\sin {{50}^{\circ }}\sin {{70}^{\circ }}$ is $\dfrac{7}{8}$. \[\]
Note:
We can alternatively solve using product of sines formula in terms cosine difference and sum of angles as $\sin A\sin B=\dfrac{1}{2}\left[ \cos \left( A-B \right)-\cos \left( A+B \right) \right]$ and then proceed to use again product of sine and cosine$\sin A\cos B=\dfrac{1}{2}\left[ \sin \left( A+B \right)-\sin \left( A-B \right) \right]$. We can also quickly find the answer if we know the formula $\sin A\sin \left( {{60}^{\circ }}-A \right)\sin \left( {{60}^{\circ }}+A \right)=\dfrac{1}{4}\sin 3A$ and use it for $A={{10}^{\circ }}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

