
Find the value of $ {(1.01)^5} $ correct to $ 5 $ decimal places.
Answer
561.6k+ views
Hint: For this type of problem we use a binomial expansion formula. For this we first write the given problem in terms of $ {(x + a)^n} $ and then on expanding and simplifying to get the required solution of the problem.
\[{(x + a)^n} = {\,^n}{C_0}{x^n} + {\,^n}{C_1}{x^{n - 1}}{a^1} + {\,^n}{C_2}{x^{n - 2}}{a^2} + ..... + {\,^n}{C_n}{a^n}\]where ‘x’ is the first and ‘a’ is the second part of the base.
Formulas of combination: $ ^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} $
Complete step-by-step answer:
Given, $ {(1.01)^5} $
First we convert base in terms of (x + a) to get the value of ‘x’ and ‘a’.
Writing $ 1.01\,\,as\,\,\left( {1 + 0.01} \right) $
Therefore, $ {(1.01)^5} $ becomes $ {\left( {1 + 0.01} \right)^5} $ .
Then, according to binomial $ {(x + a)^n} $ . We have $ x = 1\,\,and\,\,a = 0.01 $ .
Now, substituting values of ‘x’ and ‘a’ in above mentioned binomial formula. We have,
$ {\left( {1 + 0.01} \right)^5}{ = ^5}{C_0}{(1)^5}{ + ^5}{C_1}{(1)^4}{\left( {0.01} \right)^1}{ + ^5}{C_2}{(1)^3}{\left( {0.01} \right)^2}{ + ^5}{C_3}{(1)^2}{\left( {0.01} \right)^3}{ + ^5}{C_4}{(1)^1}{(0.01)^4}{ + ^5}{C_5}{(0.01)^5} $
Simplifying the right hand side of the above formed equation by using values of combination.
$ ^5{C_0}{ = ^5}{C_5} = 1,\,\,{\,^5}{C_1}{ = ^5}{C_4} = 5,\,\,\,and\,{\,^5}{C_2}{ = ^5}{C_3} = \dfrac{{5!}}{{2!3!}} = 10 $
Using these values of combination in above formed equation. We have,
$ {\left( {1 + 0.1} \right)^5} = (1)(1) + (5)(0.01) + (10)(0.0001) + (10)(0.000001) + (5)(0.00000001) + (1)(0.0000000001) $
Simplifying the right hand side of the above formed equation.
$ {\left( {1 + 0.01} \right)^5} = 1 + 0.05 + 0.001 + 0.00001 + 0.00000005 + 0.0000000001 $
$ \Rightarrow {\left( {1 + 0.1} \right)^5} = $ $ 1.50101001501 $
Or
$ {\left( {1.01} \right)^5} = 1.05101001501 $
Hence, from above we see that the value of $ {\left( {1.01} \right)^5} $ is $ 1.05101001501 $ .
But, its value up to $ 5 $ decimals places is $ = 1.05101 $
Note: In binomial there are two expansion formulas. One for those terms in which index power or binomial power is a natural number, for this binomial expansion formula is\[{(x + a)^n} = {\,^n}{C_0}{x^n} + {\,^n}{C_1}{x^{n - 1}}{a^1} + {\,^n}{C_2}{x^{n - 2}}{a^2} + ..... + {\,^n}{C_n}{a^n}\]. But, if index power or binomial power is either negative or in fraction. Then binomial expansion will be given as:
\[{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n.(n - 1)}}{{2!}}{x^2} + \dfrac{{n(n - 1)(n - 2)}}{{3!}}{x^3} + ..... + \dfrac{{n(n - 1)(n - 2)...(n - r + 1)}}{{r!}}{x^r} + ...\].
In this expansion the number of terms are infinite. So, students must choose appropriate formulas of expansion to find the correct solution of a problem.
\[{(x + a)^n} = {\,^n}{C_0}{x^n} + {\,^n}{C_1}{x^{n - 1}}{a^1} + {\,^n}{C_2}{x^{n - 2}}{a^2} + ..... + {\,^n}{C_n}{a^n}\]where ‘x’ is the first and ‘a’ is the second part of the base.
Formulas of combination: $ ^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} $
Complete step-by-step answer:
Given, $ {(1.01)^5} $
First we convert base in terms of (x + a) to get the value of ‘x’ and ‘a’.
Writing $ 1.01\,\,as\,\,\left( {1 + 0.01} \right) $
Therefore, $ {(1.01)^5} $ becomes $ {\left( {1 + 0.01} \right)^5} $ .
Then, according to binomial $ {(x + a)^n} $ . We have $ x = 1\,\,and\,\,a = 0.01 $ .
Now, substituting values of ‘x’ and ‘a’ in above mentioned binomial formula. We have,
$ {\left( {1 + 0.01} \right)^5}{ = ^5}{C_0}{(1)^5}{ + ^5}{C_1}{(1)^4}{\left( {0.01} \right)^1}{ + ^5}{C_2}{(1)^3}{\left( {0.01} \right)^2}{ + ^5}{C_3}{(1)^2}{\left( {0.01} \right)^3}{ + ^5}{C_4}{(1)^1}{(0.01)^4}{ + ^5}{C_5}{(0.01)^5} $
Simplifying the right hand side of the above formed equation by using values of combination.
$ ^5{C_0}{ = ^5}{C_5} = 1,\,\,{\,^5}{C_1}{ = ^5}{C_4} = 5,\,\,\,and\,{\,^5}{C_2}{ = ^5}{C_3} = \dfrac{{5!}}{{2!3!}} = 10 $
Using these values of combination in above formed equation. We have,
$ {\left( {1 + 0.1} \right)^5} = (1)(1) + (5)(0.01) + (10)(0.0001) + (10)(0.000001) + (5)(0.00000001) + (1)(0.0000000001) $
Simplifying the right hand side of the above formed equation.
$ {\left( {1 + 0.01} \right)^5} = 1 + 0.05 + 0.001 + 0.00001 + 0.00000005 + 0.0000000001 $
$ \Rightarrow {\left( {1 + 0.1} \right)^5} = $ $ 1.50101001501 $
Or
$ {\left( {1.01} \right)^5} = 1.05101001501 $
Hence, from above we see that the value of $ {\left( {1.01} \right)^5} $ is $ 1.05101001501 $ .
But, its value up to $ 5 $ decimals places is $ = 1.05101 $
Note: In binomial there are two expansion formulas. One for those terms in which index power or binomial power is a natural number, for this binomial expansion formula is\[{(x + a)^n} = {\,^n}{C_0}{x^n} + {\,^n}{C_1}{x^{n - 1}}{a^1} + {\,^n}{C_2}{x^{n - 2}}{a^2} + ..... + {\,^n}{C_n}{a^n}\]. But, if index power or binomial power is either negative or in fraction. Then binomial expansion will be given as:
\[{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n.(n - 1)}}{{2!}}{x^2} + \dfrac{{n(n - 1)(n - 2)}}{{3!}}{x^3} + ..... + \dfrac{{n(n - 1)(n - 2)...(n - r + 1)}}{{r!}}{x^r} + ...\].
In this expansion the number of terms are infinite. So, students must choose appropriate formulas of expansion to find the correct solution of a problem.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

