
Find the value of $ {(1.01)^5} $ correct to $ 5 $ decimal places.
Answer
577.8k+ views
Hint: For this type of problem we use a binomial expansion formula. For this we first write the given problem in terms of $ {(x + a)^n} $ and then on expanding and simplifying to get the required solution of the problem.
\[{(x + a)^n} = {\,^n}{C_0}{x^n} + {\,^n}{C_1}{x^{n - 1}}{a^1} + {\,^n}{C_2}{x^{n - 2}}{a^2} + ..... + {\,^n}{C_n}{a^n}\]where ‘x’ is the first and ‘a’ is the second part of the base.
Formulas of combination: $ ^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} $
Complete step-by-step answer:
Given, $ {(1.01)^5} $
First we convert base in terms of (x + a) to get the value of ‘x’ and ‘a’.
Writing $ 1.01\,\,as\,\,\left( {1 + 0.01} \right) $
Therefore, $ {(1.01)^5} $ becomes $ {\left( {1 + 0.01} \right)^5} $ .
Then, according to binomial $ {(x + a)^n} $ . We have $ x = 1\,\,and\,\,a = 0.01 $ .
Now, substituting values of ‘x’ and ‘a’ in above mentioned binomial formula. We have,
$ {\left( {1 + 0.01} \right)^5}{ = ^5}{C_0}{(1)^5}{ + ^5}{C_1}{(1)^4}{\left( {0.01} \right)^1}{ + ^5}{C_2}{(1)^3}{\left( {0.01} \right)^2}{ + ^5}{C_3}{(1)^2}{\left( {0.01} \right)^3}{ + ^5}{C_4}{(1)^1}{(0.01)^4}{ + ^5}{C_5}{(0.01)^5} $
Simplifying the right hand side of the above formed equation by using values of combination.
$ ^5{C_0}{ = ^5}{C_5} = 1,\,\,{\,^5}{C_1}{ = ^5}{C_4} = 5,\,\,\,and\,{\,^5}{C_2}{ = ^5}{C_3} = \dfrac{{5!}}{{2!3!}} = 10 $
Using these values of combination in above formed equation. We have,
$ {\left( {1 + 0.1} \right)^5} = (1)(1) + (5)(0.01) + (10)(0.0001) + (10)(0.000001) + (5)(0.00000001) + (1)(0.0000000001) $
Simplifying the right hand side of the above formed equation.
$ {\left( {1 + 0.01} \right)^5} = 1 + 0.05 + 0.001 + 0.00001 + 0.00000005 + 0.0000000001 $
$ \Rightarrow {\left( {1 + 0.1} \right)^5} = $ $ 1.50101001501 $
Or
$ {\left( {1.01} \right)^5} = 1.05101001501 $
Hence, from above we see that the value of $ {\left( {1.01} \right)^5} $ is $ 1.05101001501 $ .
But, its value up to $ 5 $ decimals places is $ = 1.05101 $
Note: In binomial there are two expansion formulas. One for those terms in which index power or binomial power is a natural number, for this binomial expansion formula is\[{(x + a)^n} = {\,^n}{C_0}{x^n} + {\,^n}{C_1}{x^{n - 1}}{a^1} + {\,^n}{C_2}{x^{n - 2}}{a^2} + ..... + {\,^n}{C_n}{a^n}\]. But, if index power or binomial power is either negative or in fraction. Then binomial expansion will be given as:
\[{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n.(n - 1)}}{{2!}}{x^2} + \dfrac{{n(n - 1)(n - 2)}}{{3!}}{x^3} + ..... + \dfrac{{n(n - 1)(n - 2)...(n - r + 1)}}{{r!}}{x^r} + ...\].
In this expansion the number of terms are infinite. So, students must choose appropriate formulas of expansion to find the correct solution of a problem.
\[{(x + a)^n} = {\,^n}{C_0}{x^n} + {\,^n}{C_1}{x^{n - 1}}{a^1} + {\,^n}{C_2}{x^{n - 2}}{a^2} + ..... + {\,^n}{C_n}{a^n}\]where ‘x’ is the first and ‘a’ is the second part of the base.
Formulas of combination: $ ^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} $
Complete step-by-step answer:
Given, $ {(1.01)^5} $
First we convert base in terms of (x + a) to get the value of ‘x’ and ‘a’.
Writing $ 1.01\,\,as\,\,\left( {1 + 0.01} \right) $
Therefore, $ {(1.01)^5} $ becomes $ {\left( {1 + 0.01} \right)^5} $ .
Then, according to binomial $ {(x + a)^n} $ . We have $ x = 1\,\,and\,\,a = 0.01 $ .
Now, substituting values of ‘x’ and ‘a’ in above mentioned binomial formula. We have,
$ {\left( {1 + 0.01} \right)^5}{ = ^5}{C_0}{(1)^5}{ + ^5}{C_1}{(1)^4}{\left( {0.01} \right)^1}{ + ^5}{C_2}{(1)^3}{\left( {0.01} \right)^2}{ + ^5}{C_3}{(1)^2}{\left( {0.01} \right)^3}{ + ^5}{C_4}{(1)^1}{(0.01)^4}{ + ^5}{C_5}{(0.01)^5} $
Simplifying the right hand side of the above formed equation by using values of combination.
$ ^5{C_0}{ = ^5}{C_5} = 1,\,\,{\,^5}{C_1}{ = ^5}{C_4} = 5,\,\,\,and\,{\,^5}{C_2}{ = ^5}{C_3} = \dfrac{{5!}}{{2!3!}} = 10 $
Using these values of combination in above formed equation. We have,
$ {\left( {1 + 0.1} \right)^5} = (1)(1) + (5)(0.01) + (10)(0.0001) + (10)(0.000001) + (5)(0.00000001) + (1)(0.0000000001) $
Simplifying the right hand side of the above formed equation.
$ {\left( {1 + 0.01} \right)^5} = 1 + 0.05 + 0.001 + 0.00001 + 0.00000005 + 0.0000000001 $
$ \Rightarrow {\left( {1 + 0.1} \right)^5} = $ $ 1.50101001501 $
Or
$ {\left( {1.01} \right)^5} = 1.05101001501 $
Hence, from above we see that the value of $ {\left( {1.01} \right)^5} $ is $ 1.05101001501 $ .
But, its value up to $ 5 $ decimals places is $ = 1.05101 $
Note: In binomial there are two expansion formulas. One for those terms in which index power or binomial power is a natural number, for this binomial expansion formula is\[{(x + a)^n} = {\,^n}{C_0}{x^n} + {\,^n}{C_1}{x^{n - 1}}{a^1} + {\,^n}{C_2}{x^{n - 2}}{a^2} + ..... + {\,^n}{C_n}{a^n}\]. But, if index power or binomial power is either negative or in fraction. Then binomial expansion will be given as:
\[{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n.(n - 1)}}{{2!}}{x^2} + \dfrac{{n(n - 1)(n - 2)}}{{3!}}{x^3} + ..... + \dfrac{{n(n - 1)(n - 2)...(n - r + 1)}}{{r!}}{x^r} + ...\].
In this expansion the number of terms are infinite. So, students must choose appropriate formulas of expansion to find the correct solution of a problem.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

