
Find the value of $1{ + ^n}{C_1}\cos \theta { + ^n}{C_2}\cos 2\theta + .......{ + ^n}{C_n}\cos n\theta $
A. ${\left( {2\cos \dfrac{\theta }{2}} \right)^n}\cos \dfrac{{n\theta }}{2}$
B. $2{\cos ^2}\dfrac{{n\theta }}{2}$
C. $2{\cos ^{2n}}\dfrac{\theta }{2}$
D. ${\left( {2{{\cos }^2}\dfrac{\theta }{2}} \right)^n}$
Answer
614.4k+ views
Hint – We will use binomial theorem and de Moivre’s theorem to get the given equation in question and its result, also with the little help of trigonometric identities.
Complete step-by-step answer:
We will solve the above equation by using the binomial theorem i.e.
${\left( {1 + x} \right)^n} = 1{ + ^n}{C_1}x{ + ^n}{C_2}{x^2} + ....{ + ^n}{C_n}{x^n}$
Now, we will substitute $x = \cos \theta + \iota \sin \theta $ in above equation, where $\iota = \sqrt { - 1} $
${\left( {1 + \cos \theta + \iota \sin \theta } \right)^n} = 1{ + ^n}{C_1}\left( {\cos \theta + \iota \sin \theta } \right){ + ^n}{C_2}{\left( {\cos \theta + \iota \sin \theta } \right)^2} + ....{ + ^n}{C_n}{\left( {\cos \theta + \iota \sin \theta } \right)^n}$ … (1)
Now, we will use de Moivre’s theorem to RHS which states that: ${\left( {\cos \theta + \iota \sin \theta } \right)^n} = \cos n\theta + \iota \sin n\theta $
And to LHS we will use trigonometric ‘half angle’ and ‘double angle’ identities i.e.
$\sin 2\theta = 2\sin \theta \cos \theta $ and
$
\cos \dfrac{\theta }{2} = \sqrt {\dfrac{{1 + \cos \theta }}{2}} \\
\Rightarrow 2{\cos ^2}\dfrac{\theta }{2} = 1 + \cos \theta \\
$
So, we will get the equation (1) as
${\left( {2{{\cos }^2}\dfrac{\theta }{2} + 2\iota \sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)^n} = 1{ + ^n}{C_1}\left( {\cos \theta + \iota \sin \theta } \right){ + ^n}{C_2}\left( {\cos 2\theta + \iota \sin 2\theta } \right) + .....{ + ^n}{C_n}\left( {\cos n\theta + \iota \sin n\theta } \right)$
Now, by simplifying it we will get,
$
\Rightarrow {\left[ {\left( {2\cos \dfrac{\theta }{2}} \right)\left( {\cos \dfrac{\theta }{2} + \iota \sin \dfrac{\theta }{2}} \right)} \right]^n} = \left( {1{ + ^n}{C_1}\cos \theta { + ^n}{C_2}\cos 2\theta + {{...}^n}{C_n}\cos n\theta } \right) \\
+ \iota \left( {^n{C_1}\sin \theta { + ^n}{C_2}\sin 2\theta + ...{ + ^n}{C_n}\sin n\theta } \right) \\
$
We will again use de Moivre’s theorem on LHS
$
\Rightarrow {\left( {2\cos \dfrac{\theta }{2}} \right)^n}\left( {\cos n\dfrac{\theta }{2} + \iota \sin n\dfrac{\theta }{2}} \right) = \left( {1{ + ^n}{C_1}\cos \theta { + ^n}{C_2}\cos 2\theta + {{...}^n}{C_n}\cos n\theta } \right) \\
+ \iota \left( {^n{C_1}\sin \theta { + ^n}{C_2}\sin 2\theta + ...{ + ^n}{C_n}\sin n\theta } \right) \\
$
Now, equate the real part from both sides.
$1{ + ^n}{C_1}\cos \theta { + ^n}{C_2}\cos 2\theta + {...^n}{C_n}\cos n\theta = {\left( {2\cos \dfrac{\theta }{2}} \right)^n}\cos n\dfrac{\theta }{2}$
Hence, the answer is ${\left( {2\cos \dfrac{\theta }{2}} \right)^n}\cos \dfrac{{n\theta }}{2}$
Hence, the correct option is A.
Note – The binomial theorem tells us how to expand expressions of the form ${\left( {a + b} \right)^n}$ which we explained above. Whereas, the de Moivre’s theorem gives us a formula for computing powers of complex numbers. It is to be noted that this is the only way possible to solve this question with the help of these theorems and trigonometric identities.
Complete step-by-step answer:
We will solve the above equation by using the binomial theorem i.e.
${\left( {1 + x} \right)^n} = 1{ + ^n}{C_1}x{ + ^n}{C_2}{x^2} + ....{ + ^n}{C_n}{x^n}$
Now, we will substitute $x = \cos \theta + \iota \sin \theta $ in above equation, where $\iota = \sqrt { - 1} $
${\left( {1 + \cos \theta + \iota \sin \theta } \right)^n} = 1{ + ^n}{C_1}\left( {\cos \theta + \iota \sin \theta } \right){ + ^n}{C_2}{\left( {\cos \theta + \iota \sin \theta } \right)^2} + ....{ + ^n}{C_n}{\left( {\cos \theta + \iota \sin \theta } \right)^n}$ … (1)
Now, we will use de Moivre’s theorem to RHS which states that: ${\left( {\cos \theta + \iota \sin \theta } \right)^n} = \cos n\theta + \iota \sin n\theta $
And to LHS we will use trigonometric ‘half angle’ and ‘double angle’ identities i.e.
$\sin 2\theta = 2\sin \theta \cos \theta $ and
$
\cos \dfrac{\theta }{2} = \sqrt {\dfrac{{1 + \cos \theta }}{2}} \\
\Rightarrow 2{\cos ^2}\dfrac{\theta }{2} = 1 + \cos \theta \\
$
So, we will get the equation (1) as
${\left( {2{{\cos }^2}\dfrac{\theta }{2} + 2\iota \sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)^n} = 1{ + ^n}{C_1}\left( {\cos \theta + \iota \sin \theta } \right){ + ^n}{C_2}\left( {\cos 2\theta + \iota \sin 2\theta } \right) + .....{ + ^n}{C_n}\left( {\cos n\theta + \iota \sin n\theta } \right)$
Now, by simplifying it we will get,
$
\Rightarrow {\left[ {\left( {2\cos \dfrac{\theta }{2}} \right)\left( {\cos \dfrac{\theta }{2} + \iota \sin \dfrac{\theta }{2}} \right)} \right]^n} = \left( {1{ + ^n}{C_1}\cos \theta { + ^n}{C_2}\cos 2\theta + {{...}^n}{C_n}\cos n\theta } \right) \\
+ \iota \left( {^n{C_1}\sin \theta { + ^n}{C_2}\sin 2\theta + ...{ + ^n}{C_n}\sin n\theta } \right) \\
$
We will again use de Moivre’s theorem on LHS
$
\Rightarrow {\left( {2\cos \dfrac{\theta }{2}} \right)^n}\left( {\cos n\dfrac{\theta }{2} + \iota \sin n\dfrac{\theta }{2}} \right) = \left( {1{ + ^n}{C_1}\cos \theta { + ^n}{C_2}\cos 2\theta + {{...}^n}{C_n}\cos n\theta } \right) \\
+ \iota \left( {^n{C_1}\sin \theta { + ^n}{C_2}\sin 2\theta + ...{ + ^n}{C_n}\sin n\theta } \right) \\
$
Now, equate the real part from both sides.
$1{ + ^n}{C_1}\cos \theta { + ^n}{C_2}\cos 2\theta + {...^n}{C_n}\cos n\theta = {\left( {2\cos \dfrac{\theta }{2}} \right)^n}\cos n\dfrac{\theta }{2}$
Hence, the answer is ${\left( {2\cos \dfrac{\theta }{2}} \right)^n}\cos \dfrac{{n\theta }}{2}$
Hence, the correct option is A.
Note – The binomial theorem tells us how to expand expressions of the form ${\left( {a + b} \right)^n}$ which we explained above. Whereas, the de Moivre’s theorem gives us a formula for computing powers of complex numbers. It is to be noted that this is the only way possible to solve this question with the help of these theorems and trigonometric identities.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

