
How do you find the value for \[\arctan (0)\] or \[{{\tan }^{-1}}(0)\] ?
Answer
544.5k+ views
Hint: To calculate this let suppose the value of this inverse function be \[x\]. Then take the \[\tan \] both sides then using the property of inverse functions that is \[\tan ({{\tan }^{-1}}t)=t\] then just do simple algebraic operations.
Formula used: \[\tan ({{\tan }^{-1}}t)=t\]
Complete step by step solution:
First of all. Let suppose the value of \[{{\tan }^{-1}}(0)\] be \[x\]
\[\Rightarrow {{\tan }^{-1}}0=x\]
Now taking \[\tan \] function both sides
\[\Rightarrow \tan ({{\tan }^{-1}}0)=\tan x\]
And we know that \[\tan ({{\tan }^{-1}}t)=t\]
So, using this property
\[\Rightarrow 0=\tan x\]
\[\Rightarrow \tan x=0\]
Since \[x\] is the output of the function \[{{\tan }^{-1}}t\]
And also, the range of this function is \[[0,{}^{\pi }/{}_{2})\]
And we know that \[\tan 0=0\]
\[\Rightarrow \tan x=\tan 0\]
Now compare this value with the above-calculated value
\[\Rightarrow x=0\]
Hence the value of \[{{\tan }^{-1}}(0)=0\]
Note:
When we have to find the value of the inverse function just assume a variable to the output value and then use the appropriate properties of inverse trigonometric functions. You should remember the values of trigonometric functions with their respective domain.
Formula used: \[\tan ({{\tan }^{-1}}t)=t\]
Complete step by step solution:
First of all. Let suppose the value of \[{{\tan }^{-1}}(0)\] be \[x\]
\[\Rightarrow {{\tan }^{-1}}0=x\]
Now taking \[\tan \] function both sides
\[\Rightarrow \tan ({{\tan }^{-1}}0)=\tan x\]
And we know that \[\tan ({{\tan }^{-1}}t)=t\]
So, using this property
\[\Rightarrow 0=\tan x\]
\[\Rightarrow \tan x=0\]
Since \[x\] is the output of the function \[{{\tan }^{-1}}t\]
And also, the range of this function is \[[0,{}^{\pi }/{}_{2})\]
And we know that \[\tan 0=0\]
\[\Rightarrow \tan x=\tan 0\]
Now compare this value with the above-calculated value
\[\Rightarrow x=0\]
Hence the value of \[{{\tan }^{-1}}(0)=0\]
Note:
When we have to find the value of the inverse function just assume a variable to the output value and then use the appropriate properties of inverse trigonometric functions. You should remember the values of trigonometric functions with their respective domain.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

What are porins class 11 biology CBSE

