
Find the value $\dfrac{{\sec \theta + \tan \theta - 1}}{{\tan \theta - \sec \theta + 1}}$
$
A)\sec \theta - \tan \theta \\
B)\tan \theta - \sec \theta \\
C)\sec \theta + \tan \theta \\
D)1 \\
$
Answer
615.3k+ views
Hint: Here, we will use the trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1 $to simplify the given equation and then by applying the simple formulae and operations the value is calculated.
Complete step-by-step answer:
Given, $\dfrac{{\sec \theta + \tan \theta - 1}}{{\tan \theta - \sec \theta + 1}}$
AS, we know, the trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$. So let us substitute the value of 1 in the numerator as ${\sec ^2}\theta - {\tan ^2}\theta $, we get
$ \Rightarrow \dfrac{{\sec \theta + \tan \theta - ({{\sec }^2}\theta - {{\tan }^2}\theta )}}{{\tan \theta - \sec \theta + 1}}$
And also we know that ${\sec ^2}\theta - {\tan ^2}\theta = (\sec \theta + \tan \theta )(\sec \theta - \tan \theta )$. Substituting it in the above formula, we get
$ \Rightarrow \dfrac{{(\sec \theta + \tan \theta ) - ((\sec \theta + \tan \theta )(\sec \theta - \tan \theta ))}}{{\tan \theta - \sec \theta + 1}}$
Let us take common $(\sec \theta + \tan \theta )$term in the numerator, we get
$
\Rightarrow \dfrac{{(\sec \theta + \tan \theta )(1 - (\sec \theta - \tan \theta ))}}{{\tan \theta - \sec \theta + 1}} \\
\Rightarrow \dfrac{{(\sec \theta + \tan \theta )(1 - \sec \theta + \tan \theta )}}{{\tan \theta - \sec \theta + 1}} \\
$
Now, from the above equation, $(1 - \sec \theta + \tan \theta )$term gets cancel and we will be left with
$ \Rightarrow \sec \theta + \tan \theta $
Hence, $\dfrac{{\sec \theta + \tan \theta - 1}}{{\tan \theta - \sec \theta + 1}} = \sec \theta + \tan \theta $.
So, option C is the correct option.
Note: To solve the given problem we need to have basic knowledge about trigonometry chapter. To solve the problem we need to think about converting values and trigonometry formulas which will be helpful for us.
Complete step-by-step answer:
Given, $\dfrac{{\sec \theta + \tan \theta - 1}}{{\tan \theta - \sec \theta + 1}}$
AS, we know, the trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$. So let us substitute the value of 1 in the numerator as ${\sec ^2}\theta - {\tan ^2}\theta $, we get
$ \Rightarrow \dfrac{{\sec \theta + \tan \theta - ({{\sec }^2}\theta - {{\tan }^2}\theta )}}{{\tan \theta - \sec \theta + 1}}$
And also we know that ${\sec ^2}\theta - {\tan ^2}\theta = (\sec \theta + \tan \theta )(\sec \theta - \tan \theta )$. Substituting it in the above formula, we get
$ \Rightarrow \dfrac{{(\sec \theta + \tan \theta ) - ((\sec \theta + \tan \theta )(\sec \theta - \tan \theta ))}}{{\tan \theta - \sec \theta + 1}}$
Let us take common $(\sec \theta + \tan \theta )$term in the numerator, we get
$
\Rightarrow \dfrac{{(\sec \theta + \tan \theta )(1 - (\sec \theta - \tan \theta ))}}{{\tan \theta - \sec \theta + 1}} \\
\Rightarrow \dfrac{{(\sec \theta + \tan \theta )(1 - \sec \theta + \tan \theta )}}{{\tan \theta - \sec \theta + 1}} \\
$
Now, from the above equation, $(1 - \sec \theta + \tan \theta )$term gets cancel and we will be left with
$ \Rightarrow \sec \theta + \tan \theta $
Hence, $\dfrac{{\sec \theta + \tan \theta - 1}}{{\tan \theta - \sec \theta + 1}} = \sec \theta + \tan \theta $.
So, option C is the correct option.
Note: To solve the given problem we need to have basic knowledge about trigonometry chapter. To solve the problem we need to think about converting values and trigonometry formulas which will be helpful for us.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

