
How do you find the unit vector perpendicular to the plane: $6x-2y+3z+8=0$?
Answer
512.1k+ views
Hint: We first use the formula of finding the vector normal to a given plane. We put the values for $6x-2y+3z+8=0$ in the equation to find the normal. We convert it into a vector form and then find the unit form by dividing it with the modulus value.
Complete answer:
The general formula for the plane equation of $ax+by+cz=d$, the vector normal to the plane is given by \[\left( a,b,c \right)\].
Converting $6x-2y+3z+8=0$ to its general form we get $6x-2y+3z=-8$.
The value of the coefficients will be $a=6,b=-2,c=3,d=-8$.
Therefore, the vector normal to the plane $6x-2y+3z+8=0$ is $\left( 6,-2,3 \right)$.
The vector form with coordinates will be $6\widehat{i}-2\widehat{j}+3\widehat{k}$.
Now we find the modulus value of the vector.
For $\overrightarrow{A}=a\widehat{i}+b\widehat{j}+c\widehat{k}$, the modulus value will be $\left| \overrightarrow{A} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$.
So, for $6\widehat{i}-2\widehat{j}+3\widehat{k}$, the modulus value will be $\left| \overrightarrow{A} \right|=\sqrt{{{6}^{2}}+{{\left( -2 \right)}^{2}}+{{3}^{2}}}=\sqrt{49}=7$.
Now the unit vector along $6\widehat{i}-2\widehat{j}+3\widehat{k}$ will be $\dfrac{\overrightarrow{A}}{\left| \overrightarrow{A} \right|}=\dfrac{6\widehat{i}-2\widehat{j}+3\widehat{k}}{7}=\dfrac{6}{7}\widehat{i}-\dfrac{2}{7}\widehat{j}+\dfrac{3}{7}\widehat{k}$.
Therefore, unit vector perpendicular to plane $6x-2y+3z+8=0$ will be $\dfrac{6}{7}\widehat{i}-\dfrac{2}{7}\widehat{j}+\dfrac{3}{7}\widehat{k}$.
Note:
The normal vector, often simply called the "normal," to a surface is always perpendicular at a fixed point. Therefore, instead of taking \[\left( a,b,c \right)\] for $ax+by+cz=d$ we can define the normal as partial derivatives and taking the determinant form of $N=\left| \begin{matrix}
{{f}_{x}}\left( {{x}_{0}},{{y}_{0}} \right) \\
{{f}_{y}}\left( {{x}_{0}},{{y}_{0}} \right) \\
1 \\
\end{matrix} \right|$ where the ${{f}_{x}}\left( {{x}_{0}},{{y}_{0}} \right)$ and ${{f}_{y}}\left( {{x}_{0}},{{y}_{0}} \right)$ are the partial derivatives for main function $f\left( x,y \right)$ at point $\left( {{x}_{0}},{{y}_{0}} \right)$.
Complete answer:
The general formula for the plane equation of $ax+by+cz=d$, the vector normal to the plane is given by \[\left( a,b,c \right)\].
Converting $6x-2y+3z+8=0$ to its general form we get $6x-2y+3z=-8$.
The value of the coefficients will be $a=6,b=-2,c=3,d=-8$.
Therefore, the vector normal to the plane $6x-2y+3z+8=0$ is $\left( 6,-2,3 \right)$.
The vector form with coordinates will be $6\widehat{i}-2\widehat{j}+3\widehat{k}$.
Now we find the modulus value of the vector.
For $\overrightarrow{A}=a\widehat{i}+b\widehat{j}+c\widehat{k}$, the modulus value will be $\left| \overrightarrow{A} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$.
So, for $6\widehat{i}-2\widehat{j}+3\widehat{k}$, the modulus value will be $\left| \overrightarrow{A} \right|=\sqrt{{{6}^{2}}+{{\left( -2 \right)}^{2}}+{{3}^{2}}}=\sqrt{49}=7$.
Now the unit vector along $6\widehat{i}-2\widehat{j}+3\widehat{k}$ will be $\dfrac{\overrightarrow{A}}{\left| \overrightarrow{A} \right|}=\dfrac{6\widehat{i}-2\widehat{j}+3\widehat{k}}{7}=\dfrac{6}{7}\widehat{i}-\dfrac{2}{7}\widehat{j}+\dfrac{3}{7}\widehat{k}$.
Therefore, unit vector perpendicular to plane $6x-2y+3z+8=0$ will be $\dfrac{6}{7}\widehat{i}-\dfrac{2}{7}\widehat{j}+\dfrac{3}{7}\widehat{k}$.
Note:
The normal vector, often simply called the "normal," to a surface is always perpendicular at a fixed point. Therefore, instead of taking \[\left( a,b,c \right)\] for $ax+by+cz=d$ we can define the normal as partial derivatives and taking the determinant form of $N=\left| \begin{matrix}
{{f}_{x}}\left( {{x}_{0}},{{y}_{0}} \right) \\
{{f}_{y}}\left( {{x}_{0}},{{y}_{0}} \right) \\
1 \\
\end{matrix} \right|$ where the ${{f}_{x}}\left( {{x}_{0}},{{y}_{0}} \right)$ and ${{f}_{y}}\left( {{x}_{0}},{{y}_{0}} \right)$ are the partial derivatives for main function $f\left( x,y \right)$ at point $\left( {{x}_{0}},{{y}_{0}} \right)$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

