Find the unit digit of the cube root of the following number: \[13824\]
a) \[8\]
b) \[6\]
c) \[4\]
d) \[2\]
Answer
329.1k+ views
Hint: Write the prime factorization of the given number and then find the triplet of same numbers to get the cube root.
We have the number \[13824\]. We have to find the unit digit of the cube root of this number. So, we will begin by writing the prime factorization of the number.
To write the prime factorization of any number, start by dividing the number by the first prime number, which is \[2\] and then continue to divide by \[2\] until you get a number which is not divisible by \[2\] (which means that you get a decimal or remainder on dividing the number by \[2\].
Then start dividing the number by the next prime number which is \[3\]. Continue dividing the number by \[3\] until you get a number which is not divisible by \[3\]. Thus, continuing the process, keep dividing the numbers by series of prime numbers \[5,7,...\] until the only numbers left are prime numbers. Write the given number as a product of all the prime numbers (considering the fact to count each prime number as many times as it divides the given number) to get the prime factorization of the given number.
Thus, we have \[13824={{2}^{9}}\times {{3}^{3}}\] as the prime factorization of \[13824\].
To find the cube root of \[13824\], we will raise it to the power \[\dfrac{1}{3}\]. Thus, we have \[{{\left( 13824 \right)}^{\dfrac{1}{3}}}={{\left( {{2}^{9}}\times {{3}^{3}} \right)}^{\dfrac{1}{3}}}={{\left( {{2}^{9}} \right)}^{\dfrac{1}{3}}}\times {{\left( {{3}^{3}} \right)}^{\dfrac{1}{3}}}={{2}^{\left( 9\times \dfrac{1}{3} \right)}}\times {{3}^{\left( 3\times \dfrac{1}{3} \right)}}={{2}^{3}}\times 3=8\times 3=24\] as the cube root of \[13824\].
As, the cube root of \[13824\] is \[24\]. Thus, the unit digit of the cube root of \[13824\] is \[4\], which is option (c).
Note: We can also find the unit digit of cube root of any number by not actually finding the cube root of the number. We just need to observe the fact that any number ending in \[1,4,5,6,9\] has the unit digit of cube root as the unit digit of the number itself.
We have the number \[13824\]. We have to find the unit digit of the cube root of this number. So, we will begin by writing the prime factorization of the number.
To write the prime factorization of any number, start by dividing the number by the first prime number, which is \[2\] and then continue to divide by \[2\] until you get a number which is not divisible by \[2\] (which means that you get a decimal or remainder on dividing the number by \[2\].
Then start dividing the number by the next prime number which is \[3\]. Continue dividing the number by \[3\] until you get a number which is not divisible by \[3\]. Thus, continuing the process, keep dividing the numbers by series of prime numbers \[5,7,...\] until the only numbers left are prime numbers. Write the given number as a product of all the prime numbers (considering the fact to count each prime number as many times as it divides the given number) to get the prime factorization of the given number.
Thus, we have \[13824={{2}^{9}}\times {{3}^{3}}\] as the prime factorization of \[13824\].
To find the cube root of \[13824\], we will raise it to the power \[\dfrac{1}{3}\]. Thus, we have \[{{\left( 13824 \right)}^{\dfrac{1}{3}}}={{\left( {{2}^{9}}\times {{3}^{3}} \right)}^{\dfrac{1}{3}}}={{\left( {{2}^{9}} \right)}^{\dfrac{1}{3}}}\times {{\left( {{3}^{3}} \right)}^{\dfrac{1}{3}}}={{2}^{\left( 9\times \dfrac{1}{3} \right)}}\times {{3}^{\left( 3\times \dfrac{1}{3} \right)}}={{2}^{3}}\times 3=8\times 3=24\] as the cube root of \[13824\].
As, the cube root of \[13824\] is \[24\]. Thus, the unit digit of the cube root of \[13824\] is \[4\], which is option (c).
Note: We can also find the unit digit of cube root of any number by not actually finding the cube root of the number. We just need to observe the fact that any number ending in \[1,4,5,6,9\] has the unit digit of cube root as the unit digit of the number itself.
Last updated date: 30th May 2023
•
Total views: 329.1k
•
Views today: 4.85k
Recently Updated Pages
If abc are pthqth and rth terms of a GP then left fraccb class 11 maths JEE_Main

If the pthqth and rth term of a GP are abc respectively class 11 maths JEE_Main

If abcdare any four consecutive coefficients of any class 11 maths JEE_Main

If A1A2 are the two AMs between two numbers a and b class 11 maths JEE_Main

If pthqthrth and sth terms of an AP be in GP then p class 11 maths JEE_Main

One root of the equation cos x x + frac12 0 lies in class 11 maths JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
