Answer

Verified

450.3k+ views

Hint: Write the prime factorization of the given number and then find the triplet of same numbers to get the cube root.

We have the number \[13824\]. We have to find the unit digit of the cube root of this number. So, we will begin by writing the prime factorization of the number.

To write the prime factorization of any number, start by dividing the number by the first prime number, which is \[2\] and then continue to divide by \[2\] until you get a number which is not divisible by \[2\] (which means that you get a decimal or remainder on dividing the number by \[2\].

Then start dividing the number by the next prime number which is \[3\]. Continue dividing the number by \[3\] until you get a number which is not divisible by \[3\]. Thus, continuing the process, keep dividing the numbers by series of prime numbers \[5,7,...\] until the only numbers left are prime numbers. Write the given number as a product of all the prime numbers (considering the fact to count each prime number as many times as it divides the given number) to get the prime factorization of the given number.

Thus, we have \[13824={{2}^{9}}\times {{3}^{3}}\] as the prime factorization of \[13824\].

To find the cube root of \[13824\], we will raise it to the power \[\dfrac{1}{3}\]. Thus, we have \[{{\left( 13824 \right)}^{\dfrac{1}{3}}}={{\left( {{2}^{9}}\times {{3}^{3}} \right)}^{\dfrac{1}{3}}}={{\left( {{2}^{9}} \right)}^{\dfrac{1}{3}}}\times {{\left( {{3}^{3}} \right)}^{\dfrac{1}{3}}}={{2}^{\left( 9\times \dfrac{1}{3} \right)}}\times {{3}^{\left( 3\times \dfrac{1}{3} \right)}}={{2}^{3}}\times 3=8\times 3=24\] as the cube root of \[13824\].

As, the cube root of \[13824\] is \[24\]. Thus, the unit digit of the cube root of \[13824\] is \[4\], which is option (c).

Note: We can also find the unit digit of cube root of any number by not actually finding the cube root of the number. We just need to observe the fact that any number ending in \[1,4,5,6,9\] has the unit digit of cube root as the unit digit of the number itself.

We have the number \[13824\]. We have to find the unit digit of the cube root of this number. So, we will begin by writing the prime factorization of the number.

To write the prime factorization of any number, start by dividing the number by the first prime number, which is \[2\] and then continue to divide by \[2\] until you get a number which is not divisible by \[2\] (which means that you get a decimal or remainder on dividing the number by \[2\].

Then start dividing the number by the next prime number which is \[3\]. Continue dividing the number by \[3\] until you get a number which is not divisible by \[3\]. Thus, continuing the process, keep dividing the numbers by series of prime numbers \[5,7,...\] until the only numbers left are prime numbers. Write the given number as a product of all the prime numbers (considering the fact to count each prime number as many times as it divides the given number) to get the prime factorization of the given number.

Thus, we have \[13824={{2}^{9}}\times {{3}^{3}}\] as the prime factorization of \[13824\].

To find the cube root of \[13824\], we will raise it to the power \[\dfrac{1}{3}\]. Thus, we have \[{{\left( 13824 \right)}^{\dfrac{1}{3}}}={{\left( {{2}^{9}}\times {{3}^{3}} \right)}^{\dfrac{1}{3}}}={{\left( {{2}^{9}} \right)}^{\dfrac{1}{3}}}\times {{\left( {{3}^{3}} \right)}^{\dfrac{1}{3}}}={{2}^{\left( 9\times \dfrac{1}{3} \right)}}\times {{3}^{\left( 3\times \dfrac{1}{3} \right)}}={{2}^{3}}\times 3=8\times 3=24\] as the cube root of \[13824\].

As, the cube root of \[13824\] is \[24\]. Thus, the unit digit of the cube root of \[13824\] is \[4\], which is option (c).

Note: We can also find the unit digit of cube root of any number by not actually finding the cube root of the number. We just need to observe the fact that any number ending in \[1,4,5,6,9\] has the unit digit of cube root as the unit digit of the number itself.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE