Answer
Verified
417.9k+ views
Hint: To solve the given problem one must know the formula for the sum of cubes of first ‘n’ natural numbers. Write the sum of the volumes of each cube in terms of the sum of cubes of first 30 natural numbers and sum of cubes of first 15 natural numbers.
Formula used: Sum of cubes of first ‘n’ natural numbers = ${{\left[ \dfrac{n(n+1)}{2} \right]}^{2}}$
Complete Answer:
The volume of a cube with each of length ‘a’ is equal to ${{a}^{3}}$.
Therefore, the volumes of the 15 cubes with sides 16cm, 17cm, 18cm,……. 30cm respectively are equal to ${{16}^{3}},{{17}^{3}},{{18}^{3}},{{......30}^{3}}$, respectively.
The total sum of the volumes of the 15 cubes is equal to $V={{16}^{3}}+{{17}^{3}}+{{18}^{3}}+......+{{30}^{3}}$ …. (i).
As we can see, equation (i) is a series of the cubes of 15 consecutive natural numbers starting from 16 to 30.
To the value of V, we shall use the formula for the sum of the cubes of first ‘n’ natural numbers and the formula is given as ${{\left[ \dfrac{n(n+1)}{2} \right]}^{2}}$.
Now, we can write the equation as the difference between cubes of the first 30 natural numbers and cubes of the first 15 natural numbers.
i.e. $V=\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{30}^{3}} \right)-\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{15}^{3}} \right)$ ….. (ii).
Now, for the above formula, we get that the sum of cubes of the first 30 natural numbers will be ${{\left[ \dfrac{30(30+1)}{2} \right]}^{2}}={{\left[ \dfrac{30(31)}{2} \right]}^{2}} = 216225$.
This means that $\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{30}^{3}} \right)=216225$.
And the sum of cubes of the first 15 natural numbers will be ${{\left[ \dfrac{15(15+1)}{2} \right]}^{2}}={{\left[ \dfrac{15(16)}{2} \right]}^{2}} = 14400$.
This means that $\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{15}^{3}} \right) = 14400$.
Now, substitute these values in equation (ii).
$\Rightarrow V = 216225 - 14400 = 201825c{{m}^{3}}$.
This means that the total volume of the 15 cubes is equal to $201825c{{m}^{3}}$.
Note: Note that the above formula is only valid for first consecutive natural numbers. The sum of the squares of first ‘n’ natural numbers is given as $\left[ \dfrac{n(2n+1)}{6} \right]$. The sum of first ‘n’ natural numbers is given as $\left[ \dfrac{n(n+1)}{2} \right]$.
Formula used: Sum of cubes of first ‘n’ natural numbers = ${{\left[ \dfrac{n(n+1)}{2} \right]}^{2}}$
Complete Answer:
The volume of a cube with each of length ‘a’ is equal to ${{a}^{3}}$.
Therefore, the volumes of the 15 cubes with sides 16cm, 17cm, 18cm,……. 30cm respectively are equal to ${{16}^{3}},{{17}^{3}},{{18}^{3}},{{......30}^{3}}$, respectively.
The total sum of the volumes of the 15 cubes is equal to $V={{16}^{3}}+{{17}^{3}}+{{18}^{3}}+......+{{30}^{3}}$ …. (i).
As we can see, equation (i) is a series of the cubes of 15 consecutive natural numbers starting from 16 to 30.
To the value of V, we shall use the formula for the sum of the cubes of first ‘n’ natural numbers and the formula is given as ${{\left[ \dfrac{n(n+1)}{2} \right]}^{2}}$.
Now, we can write the equation as the difference between cubes of the first 30 natural numbers and cubes of the first 15 natural numbers.
i.e. $V=\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{30}^{3}} \right)-\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{15}^{3}} \right)$ ….. (ii).
Now, for the above formula, we get that the sum of cubes of the first 30 natural numbers will be ${{\left[ \dfrac{30(30+1)}{2} \right]}^{2}}={{\left[ \dfrac{30(31)}{2} \right]}^{2}} = 216225$.
This means that $\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{30}^{3}} \right)=216225$.
And the sum of cubes of the first 15 natural numbers will be ${{\left[ \dfrac{15(15+1)}{2} \right]}^{2}}={{\left[ \dfrac{15(16)}{2} \right]}^{2}} = 14400$.
This means that $\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{15}^{3}} \right) = 14400$.
Now, substitute these values in equation (ii).
$\Rightarrow V = 216225 - 14400 = 201825c{{m}^{3}}$.
This means that the total volume of the 15 cubes is equal to $201825c{{m}^{3}}$.
Note: Note that the above formula is only valid for first consecutive natural numbers. The sum of the squares of first ‘n’ natural numbers is given as $\left[ \dfrac{n(2n+1)}{6} \right]$. The sum of first ‘n’ natural numbers is given as $\left[ \dfrac{n(n+1)}{2} \right]$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE