Find the total volume of 15 cubes whose edges are 16cm, 17cm, 18cm,……. 30cm respectively.
Answer
Verified
450.9k+ views
Hint: To solve the given problem one must know the formula for the sum of cubes of first ‘n’ natural numbers. Write the sum of the volumes of each cube in terms of the sum of cubes of first 30 natural numbers and sum of cubes of first 15 natural numbers.
Formula used: Sum of cubes of first ‘n’ natural numbers = ${{\left[ \dfrac{n(n+1)}{2} \right]}^{2}}$
Complete Answer:
The volume of a cube with each of length ‘a’ is equal to ${{a}^{3}}$.
Therefore, the volumes of the 15 cubes with sides 16cm, 17cm, 18cm,……. 30cm respectively are equal to ${{16}^{3}},{{17}^{3}},{{18}^{3}},{{......30}^{3}}$, respectively.
The total sum of the volumes of the 15 cubes is equal to $V={{16}^{3}}+{{17}^{3}}+{{18}^{3}}+......+{{30}^{3}}$ …. (i).
As we can see, equation (i) is a series of the cubes of 15 consecutive natural numbers starting from 16 to 30.
To the value of V, we shall use the formula for the sum of the cubes of first ‘n’ natural numbers and the formula is given as ${{\left[ \dfrac{n(n+1)}{2} \right]}^{2}}$.
Now, we can write the equation as the difference between cubes of the first 30 natural numbers and cubes of the first 15 natural numbers.
i.e. $V=\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{30}^{3}} \right)-\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{15}^{3}} \right)$ ….. (ii).
Now, for the above formula, we get that the sum of cubes of the first 30 natural numbers will be ${{\left[ \dfrac{30(30+1)}{2} \right]}^{2}}={{\left[ \dfrac{30(31)}{2} \right]}^{2}} = 216225$.
This means that $\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{30}^{3}} \right)=216225$.
And the sum of cubes of the first 15 natural numbers will be ${{\left[ \dfrac{15(15+1)}{2} \right]}^{2}}={{\left[ \dfrac{15(16)}{2} \right]}^{2}} = 14400$.
This means that $\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{15}^{3}} \right) = 14400$.
Now, substitute these values in equation (ii).
$\Rightarrow V = 216225 - 14400 = 201825c{{m}^{3}}$.
This means that the total volume of the 15 cubes is equal to $201825c{{m}^{3}}$.
Note: Note that the above formula is only valid for first consecutive natural numbers. The sum of the squares of first ‘n’ natural numbers is given as $\left[ \dfrac{n(2n+1)}{6} \right]$. The sum of first ‘n’ natural numbers is given as $\left[ \dfrac{n(n+1)}{2} \right]$.
Formula used: Sum of cubes of first ‘n’ natural numbers = ${{\left[ \dfrac{n(n+1)}{2} \right]}^{2}}$
Complete Answer:
The volume of a cube with each of length ‘a’ is equal to ${{a}^{3}}$.
Therefore, the volumes of the 15 cubes with sides 16cm, 17cm, 18cm,……. 30cm respectively are equal to ${{16}^{3}},{{17}^{3}},{{18}^{3}},{{......30}^{3}}$, respectively.
The total sum of the volumes of the 15 cubes is equal to $V={{16}^{3}}+{{17}^{3}}+{{18}^{3}}+......+{{30}^{3}}$ …. (i).
As we can see, equation (i) is a series of the cubes of 15 consecutive natural numbers starting from 16 to 30.
To the value of V, we shall use the formula for the sum of the cubes of first ‘n’ natural numbers and the formula is given as ${{\left[ \dfrac{n(n+1)}{2} \right]}^{2}}$.
Now, we can write the equation as the difference between cubes of the first 30 natural numbers and cubes of the first 15 natural numbers.
i.e. $V=\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{30}^{3}} \right)-\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{15}^{3}} \right)$ ….. (ii).
Now, for the above formula, we get that the sum of cubes of the first 30 natural numbers will be ${{\left[ \dfrac{30(30+1)}{2} \right]}^{2}}={{\left[ \dfrac{30(31)}{2} \right]}^{2}} = 216225$.
This means that $\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{30}^{3}} \right)=216225$.
And the sum of cubes of the first 15 natural numbers will be ${{\left[ \dfrac{15(15+1)}{2} \right]}^{2}}={{\left[ \dfrac{15(16)}{2} \right]}^{2}} = 14400$.
This means that $\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+......+{{15}^{3}} \right) = 14400$.
Now, substitute these values in equation (ii).
$\Rightarrow V = 216225 - 14400 = 201825c{{m}^{3}}$.
This means that the total volume of the 15 cubes is equal to $201825c{{m}^{3}}$.
Note: Note that the above formula is only valid for first consecutive natural numbers. The sum of the squares of first ‘n’ natural numbers is given as $\left[ \dfrac{n(2n+1)}{6} \right]$. The sum of first ‘n’ natural numbers is given as $\left[ \dfrac{n(n+1)}{2} \right]$.
Recently Updated Pages
Class 8 Question and Answer - Your Ultimate Solutions Guide
Master Class 8 Social Science: Engaging Questions & Answers for Success
Master Class 8 Maths: Engaging Questions & Answers for Success
Master Class 8 English: Engaging Questions & Answers for Success
Master Class 8 Science: Engaging Questions & Answers for Success
Identify how many lines of symmetry drawn are there class 8 maths CBSE
Trending doubts
How is the Lok Sabha more powerful than the Rajya class 8 social science CBSE
Write a letter to your friend telling himher how you class 8 english CBSE
Write the following in HinduArabic numerals XXIX class 8 maths CBSE
The strategy of Divide and rule was adopted by A Lord class 8 social science CBSE
When will we use have had and had had in the sente class 8 english CBSE
Write a short biography of Dr APJ Abdul Kalam under class 8 english CBSE