
Find the total number of 2-digit numbers.
Answer
601.8k+ views
Hint- Here, we will proceed by using the concept of permutations. We will find out exactly how many digits out of the digits 0,1,2,3,4,5,6,7,8,9 can be occupied at the one’s place and ten’s place in order to obtain any 2-digit number.
Complete step-by-step solution -
As we know any 2-digit number consists of two digits placed at its one’s place and ten’s place and these digits can be 0,1,2,3,4,5,6,7,8,9 (total 10 digits).
For any number to be a 2-digit number, 0 should not occur at the ten’s place because if 0 occurs at the ten’s place this number will become a 1-digit number.
So, any one of the ten digits (0,1,2,3,4,5,6,7,8,9) can be placed at the one’s place and any one of the nine digits (1,2,3,4,5,6,7,8,9) can be placed at the ten’s place in order to get a 2-digit number.
Number of possible digits which can be placed at one’s place = 10
Number of possible digits which can be placed at ten’s place = 9
Since, Total number of 2-digit numbers = (Number of possible digits which can be placed at one’s place)$ \times $( Number of possible digits which can be placed at ten’s place)
$ \Rightarrow $Total number of 2-digit numbers = $10 \times 9 = 90$
Therefore, the total number of 2-digit numbers which can be obtained are 90.
Note- In this particular problem, we have used the basic method of finding out the total number of n-digit numbers where n can be 1,2,3, etc. The total number of 2-digits numbers which can be obtained are easily found by simply counting as numbers 0 to 9 are 1-digit numbers and the numbers 11 to 99 are 2-digit numbers which are 90.
Complete step-by-step solution -
As we know any 2-digit number consists of two digits placed at its one’s place and ten’s place and these digits can be 0,1,2,3,4,5,6,7,8,9 (total 10 digits).
For any number to be a 2-digit number, 0 should not occur at the ten’s place because if 0 occurs at the ten’s place this number will become a 1-digit number.
So, any one of the ten digits (0,1,2,3,4,5,6,7,8,9) can be placed at the one’s place and any one of the nine digits (1,2,3,4,5,6,7,8,9) can be placed at the ten’s place in order to get a 2-digit number.
Number of possible digits which can be placed at one’s place = 10
Number of possible digits which can be placed at ten’s place = 9
Since, Total number of 2-digit numbers = (Number of possible digits which can be placed at one’s place)$ \times $( Number of possible digits which can be placed at ten’s place)
$ \Rightarrow $Total number of 2-digit numbers = $10 \times 9 = 90$
Therefore, the total number of 2-digit numbers which can be obtained are 90.
Note- In this particular problem, we have used the basic method of finding out the total number of n-digit numbers where n can be 1,2,3, etc. The total number of 2-digits numbers which can be obtained are easily found by simply counting as numbers 0 to 9 are 1-digit numbers and the numbers 11 to 99 are 2-digit numbers which are 90.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

