Answer
Verified
472.5k+ views
Hint: First of all, it is necessary to recollect what equivalent fractions are. Then multiply the numerator and denominator of the given fraction by the same number to get the equivalent fraction of the given fraction.
Complete step-by-step answer:
Here we have to find the three equivalent fractions for the fraction \[\dfrac{3}{18}\].
Before proceeding with this question, we must know what equivalent fractions are.
The equivalent fractions are a type of fractions that seem to be different (not having the same numbers) but they are equivalent, that is they have equal values.
The two equivalent fractions have equal values both in numerator and denominator after simplifications of the given fractions.
For example, \[\dfrac{1}{4},\dfrac{2}{8},\dfrac{3}{12},\dfrac{4}{16}\] are all equivalent fraction because they all give \[\dfrac{1}{4}\] after simplification.
We know that if we multiply or divide any number by 1, its value remains the same.
Also, we can write 1 in the form of a fraction as \[\dfrac{1}{1}\text{ or }\dfrac{2}{2}\text{ or }\dfrac{3}{3}\text{ or }\dfrac{5}{5}\text{ or }\dfrac{n}{n}\] and here n can be any number. When we simplify any of these numbers we will get 1.
We know that if we multiply \[1=\dfrac{n}{n}\] to any number or fraction value of that number or fraction will remain constant.
Now, here let us consider the fraction given in the question.
\[F=\dfrac{3}{18}\]
By multiplying 1 on both the sides, we get,
\[F\times 1=\dfrac{3}{18}\times 1\]
By substituting \[1=\dfrac{n}{n}\] on the RHS of the above equation, we get,
\[F=\dfrac{3}{18}\times \dfrac{n}{n}=\dfrac{3n}{18n}....\left( i \right)\]
In the above fraction, by substituting the different values of n, we can find the equivalent fraction to \[\dfrac{3}{18}\]
Let us substitute n = 2 in equation (i), we get,
\[F=\dfrac{3\times 2}{18\times 2}=\dfrac{6}{36}\]
Let us substitute n = 10 in equation (i), we get,
\[F=\dfrac{3\times 10}{18\times 10}=\dfrac{30}{180}\]
Let us substitute n = 120 in equation (i), we get,
\[F=\dfrac{3\times 120}{18\times 120}=\dfrac{360}{2160}\]
So, we get 3 fractions equivalent to \[\dfrac{3}{18}\] as,
\[\dfrac{6}{36},\dfrac{30}{180}\text{ and }\dfrac{360}{2160}\]
Here, we can see that the values of all the above fractions are equal and that is equal to 0.167.
Note:
Students must remember that equivalent fractions are those which are equal, that means if \[\dfrac{a}{b}=\dfrac{c}{d}\], then \[\dfrac{a}{b}\] and \[\dfrac{c}{d}\] are an equivalent fraction. Also, students can cross-check the given fraction by simplifying it. For example, let us cross-check \[\dfrac{360}{2160}\]. We can write,
\[\dfrac{360}{2160}=\dfrac{3\times 120}{18\times 120}\]
By canceling the like terms, we get,
\[\dfrac{360}{2160}=\dfrac{3}{18}\]
Hence, our answer is correct.
Complete step-by-step answer:
Here we have to find the three equivalent fractions for the fraction \[\dfrac{3}{18}\].
Before proceeding with this question, we must know what equivalent fractions are.
The equivalent fractions are a type of fractions that seem to be different (not having the same numbers) but they are equivalent, that is they have equal values.
The two equivalent fractions have equal values both in numerator and denominator after simplifications of the given fractions.
For example, \[\dfrac{1}{4},\dfrac{2}{8},\dfrac{3}{12},\dfrac{4}{16}\] are all equivalent fraction because they all give \[\dfrac{1}{4}\] after simplification.
We know that if we multiply or divide any number by 1, its value remains the same.
Also, we can write 1 in the form of a fraction as \[\dfrac{1}{1}\text{ or }\dfrac{2}{2}\text{ or }\dfrac{3}{3}\text{ or }\dfrac{5}{5}\text{ or }\dfrac{n}{n}\] and here n can be any number. When we simplify any of these numbers we will get 1.
We know that if we multiply \[1=\dfrac{n}{n}\] to any number or fraction value of that number or fraction will remain constant.
Now, here let us consider the fraction given in the question.
\[F=\dfrac{3}{18}\]
By multiplying 1 on both the sides, we get,
\[F\times 1=\dfrac{3}{18}\times 1\]
By substituting \[1=\dfrac{n}{n}\] on the RHS of the above equation, we get,
\[F=\dfrac{3}{18}\times \dfrac{n}{n}=\dfrac{3n}{18n}....\left( i \right)\]
In the above fraction, by substituting the different values of n, we can find the equivalent fraction to \[\dfrac{3}{18}\]
Let us substitute n = 2 in equation (i), we get,
\[F=\dfrac{3\times 2}{18\times 2}=\dfrac{6}{36}\]
Let us substitute n = 10 in equation (i), we get,
\[F=\dfrac{3\times 10}{18\times 10}=\dfrac{30}{180}\]
Let us substitute n = 120 in equation (i), we get,
\[F=\dfrac{3\times 120}{18\times 120}=\dfrac{360}{2160}\]
So, we get 3 fractions equivalent to \[\dfrac{3}{18}\] as,
\[\dfrac{6}{36},\dfrac{30}{180}\text{ and }\dfrac{360}{2160}\]
Here, we can see that the values of all the above fractions are equal and that is equal to 0.167.
Note:
Students must remember that equivalent fractions are those which are equal, that means if \[\dfrac{a}{b}=\dfrac{c}{d}\], then \[\dfrac{a}{b}\] and \[\dfrac{c}{d}\] are an equivalent fraction. Also, students can cross-check the given fraction by simplifying it. For example, let us cross-check \[\dfrac{360}{2160}\]. We can write,
\[\dfrac{360}{2160}=\dfrac{3\times 120}{18\times 120}\]
By canceling the like terms, we get,
\[\dfrac{360}{2160}=\dfrac{3}{18}\]
Hence, our answer is correct.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE