
Find the sum upto n terms of the series-
$3 + 7 + 13 + 21 + 31 + ...n$ terms
Answer
606.3k+ views
Hint: To find the sum of the series, we will first check if it is an AP or a GP. An AP is a series where successive terms have the same common difference. For example- 1, 3, 5, 7, 9, … A GP is a series where successive terms have the same ratio. For example- 2, 4, 8, 16, 32, …
Complete step-by-step answer:
In the given series $3 + 7 + 13 + 21 +31..,$ we can clearly see that it is neither an AP nor a GP. The common difference and ratio keep on changing as-
$7 - 3 \ne 13 - 7$
$\dfrac{7}{3} \ne \dfrac{{13}}{7}$
When we look closely, the common difference of successive terms are
$7 - 3 = 4$
$13 - 7 = 6$
$21 - 13 = 8$
$31 - 21 = 10$
We can see that the common differences of successive terms are forming an AP. These types of series can be solved by method of difference as-
$\begin{align}
&{{\text{S}}_{\text{n}}} = 3 + 7 + 13 + 21 + .... + {{\text{a}}_{{\text{n}} - 1}} + {{\text{a}}_{\text{n}}} \\
&{{\text{S}}_{\text{n}}} = 0 + 3 + \;7\; + 13 + .... + {{\text{a}}_{{\text{n}} - 2}} + {{\text{a}}_{{\text{n}} - 1}} + {{\text{a}}_{\text{n}}} \\
\text{ Subtracting term by term we get -} \\
&0 = 3 + \left[ {\left( {7 - 3} \right) + \left( {13 - 7} \right) + \left( {21 - 13} \right) + ...\left( {{{\text{a}}_{\text{n}}} - {{\text{a}}_{{\text{n}} - 1}}} \right)} \right] - {{\text{a}}_{\text{n}}} \\
&{{\text{a}}_{\text{n}}} = 3 + \left[ {4 + 6 + 8 + ... + {{\text{a}}_{{\text{n}} - 1}}} \right] \\
\end{align} $
The terms in the bracket form an AP of (n - 1) terms with first term 4 and common difference 2. The sum of an AP is given by-
${\text{S}} = \dfrac{{\text{n}}}{2}\left( {2{\text{a}} + \left( {{\text{n}} - 1} \right){\text{d}}} \right)$
Putting $n = n - 1$, $a = 4$ and $d = 2$,
$\begin{align}
&{\text{S}} = \dfrac{{{\text{n}} - 1}}{2}\left( {2 \times 4 + \left( {{\text{n}} - 2} \right)2} \right) \\
&{\text{S}} = \left( {{\text{n}} - 1} \right)\dfrac{{\left( {2{\text{n}} - 4 + 8} \right)}}{2} = \left( {{\text{n}} - 1} \right)\dfrac{{\left( {2{\text{n}} + 4} \right)}}{2} \\
&{\text{S}} = \left( {{\text{n}} - 1} \right)\left( {{\text{n}} + 2} \right) \\
\end{align} $
So we can substitute the value of S as-
$\begin{align}
&{{\text{a}}_{\text{n}}} = 3 + \left( {{\text{n}} - 1} \right)\left( {{\text{n}} + 2} \right) \\
&{{\text{a}}_{\text{n}}} = 3 + {{\text{n}}^2} + {\text{n}} - 2 \\
&{{\text{a}}_{\text{n}}} = {{\text{n}}^2} + {\text{n}} + 1 \\
\end{align} $
To find the sum of the series, we will add the general terms using summation and get the answer as-
$\mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} {{\text{a}}_{\text{r}}} = \mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} \left( {{{\text{r}}^2} + {\text{r}} + 1} \right)$
We know that-
$\mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} {{\text{r}}^2} = \dfrac{{{\text{n}}\left( {{\text{n}} + 1} \right)\left( {2{\text{n}} + 1} \right)}}{6}$
$\mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} {\text{r}} = \dfrac{{{\text{n}}\left( {{\text{n}} + 1} \right)}}{2}$
$\mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} \left( 1 \right) = {\text{n}}$
Using these properties we can write that-
$\mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} \left( {{{\text{r}}^2} + {\text{r}} + 1} \right) = \mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} {{\text{r}}^2} + \mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} {\text{r}} + \mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} 1$
Applying the values we get-
$\begin{align}
&= \dfrac{{{\text{n}}\left( {{\text{n}} + 1} \right)\left( {2{\text{n}} + 1} \right)}}{6} + \dfrac{{{\text{n}}\left( {{\text{n}} + 1} \right)}}{2} + {\text{n}} \\
& = \dfrac{{2{{\text{n}}^3} + {{\text{n}}^2} + 2{{\text{n}}^2} + {\text{n}}}}{6} + \dfrac{{{{\text{n}}^2} + {\text{n}}}}{2} + {\text{n}} \\
& = \dfrac{{2{{\text{n}}^3} + 3{{\text{n}}^2} + {\text{n}} + 3{{\text{n}}^2} + 3{\text{n}} + 6{\text{n}}}}{6} \\
& = \dfrac{{2{{\text{n}}^3} + 6{{\text{n}}^2} + 10{\text{n}}}}{6} = \dfrac{{\text{n}}}{3}\left( {{{\text{n}}^2} + 3{\text{n}} + 5} \right) \\
\end{align} $
This is the required answer.
Note: This is a complex question which requires multiple concepts such as AP, GP, sequences and summation. We should always keep in mind that if the common difference of the series itself is making an AP, we should always use method difference.
In the given series $3 + 7 + 13 + 21 +31..,$ we can clearly see that it is neither an AP nor a GP. The common difference and ratio keep on changing as-
$7 - 3 \ne 13 - 7$
$\dfrac{7}{3} \ne \dfrac{{13}}{7}$
When we look closely, the common difference of successive terms are
$7 - 3 = 4$
$13 - 7 = 6$
$21 - 13 = 8$
$31 - 21 = 10$
We can see that the common differences of successive terms are forming an AP. These types of series can be solved by method of difference as-
$\begin{align}
&{{\text{S}}_{\text{n}}} = 3 + 7 + 13 + 21 + .... + {{\text{a}}_{{\text{n}} - 1}} + {{\text{a}}_{\text{n}}} \\
&{{\text{S}}_{\text{n}}} = 0 + 3 + \;7\; + 13 + .... + {{\text{a}}_{{\text{n}} - 2}} + {{\text{a}}_{{\text{n}} - 1}} + {{\text{a}}_{\text{n}}} \\
\text{ Subtracting term by term we get -} \\
&0 = 3 + \left[ {\left( {7 - 3} \right) + \left( {13 - 7} \right) + \left( {21 - 13} \right) + ...\left( {{{\text{a}}_{\text{n}}} - {{\text{a}}_{{\text{n}} - 1}}} \right)} \right] - {{\text{a}}_{\text{n}}} \\
&{{\text{a}}_{\text{n}}} = 3 + \left[ {4 + 6 + 8 + ... + {{\text{a}}_{{\text{n}} - 1}}} \right] \\
\end{align} $
The terms in the bracket form an AP of (n - 1) terms with first term 4 and common difference 2. The sum of an AP is given by-
${\text{S}} = \dfrac{{\text{n}}}{2}\left( {2{\text{a}} + \left( {{\text{n}} - 1} \right){\text{d}}} \right)$
Putting $n = n - 1$, $a = 4$ and $d = 2$,
$\begin{align}
&{\text{S}} = \dfrac{{{\text{n}} - 1}}{2}\left( {2 \times 4 + \left( {{\text{n}} - 2} \right)2} \right) \\
&{\text{S}} = \left( {{\text{n}} - 1} \right)\dfrac{{\left( {2{\text{n}} - 4 + 8} \right)}}{2} = \left( {{\text{n}} - 1} \right)\dfrac{{\left( {2{\text{n}} + 4} \right)}}{2} \\
&{\text{S}} = \left( {{\text{n}} - 1} \right)\left( {{\text{n}} + 2} \right) \\
\end{align} $
So we can substitute the value of S as-
$\begin{align}
&{{\text{a}}_{\text{n}}} = 3 + \left( {{\text{n}} - 1} \right)\left( {{\text{n}} + 2} \right) \\
&{{\text{a}}_{\text{n}}} = 3 + {{\text{n}}^2} + {\text{n}} - 2 \\
&{{\text{a}}_{\text{n}}} = {{\text{n}}^2} + {\text{n}} + 1 \\
\end{align} $
To find the sum of the series, we will add the general terms using summation and get the answer as-
$\mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} {{\text{a}}_{\text{r}}} = \mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} \left( {{{\text{r}}^2} + {\text{r}} + 1} \right)$
We know that-
$\mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} {{\text{r}}^2} = \dfrac{{{\text{n}}\left( {{\text{n}} + 1} \right)\left( {2{\text{n}} + 1} \right)}}{6}$
$\mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} {\text{r}} = \dfrac{{{\text{n}}\left( {{\text{n}} + 1} \right)}}{2}$
$\mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} \left( 1 \right) = {\text{n}}$
Using these properties we can write that-
$\mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} \left( {{{\text{r}}^2} + {\text{r}} + 1} \right) = \mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} {{\text{r}}^2} + \mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} {\text{r}} + \mathop \sum \limits_{{\text{r}} = 1}^{\text{n}} 1$
Applying the values we get-
$\begin{align}
&= \dfrac{{{\text{n}}\left( {{\text{n}} + 1} \right)\left( {2{\text{n}} + 1} \right)}}{6} + \dfrac{{{\text{n}}\left( {{\text{n}} + 1} \right)}}{2} + {\text{n}} \\
& = \dfrac{{2{{\text{n}}^3} + {{\text{n}}^2} + 2{{\text{n}}^2} + {\text{n}}}}{6} + \dfrac{{{{\text{n}}^2} + {\text{n}}}}{2} + {\text{n}} \\
& = \dfrac{{2{{\text{n}}^3} + 3{{\text{n}}^2} + {\text{n}} + 3{{\text{n}}^2} + 3{\text{n}} + 6{\text{n}}}}{6} \\
& = \dfrac{{2{{\text{n}}^3} + 6{{\text{n}}^2} + 10{\text{n}}}}{6} = \dfrac{{\text{n}}}{3}\left( {{{\text{n}}^2} + 3{\text{n}} + 5} \right) \\
\end{align} $
This is the required answer.
Note: This is a complex question which requires multiple concepts such as AP, GP, sequences and summation. We should always keep in mind that if the common difference of the series itself is making an AP, we should always use method difference.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

