
Find the sum $ {S_n} $ of the cubes of first n terms of an A.P and show that the sum of the first n terms of the A.P is a factor of $ {S_n} $ .
Answer
551.7k+ views
Hint: The sum of any n terms of the arithmetic progression series is carried out by using the formula $ {S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) $ where, n is the number of terms in series, a and d are for first term and common difference.
Complete step-by-step answer:
Consider, an A.P be $ \left( {a + d} \right) + \left( {a + 2d} \right) + \left( {a + 3d} \right) + ......... + \left( {a + nd} \right) $
Here, a common difference is not added with the first terms.
As we know that he sum of the A.P is carried out as:
$
{P_n} = \dfrac{n}{2}\left( {2\left( {a + d} \right) + \left( {n - 1} \right)d} \right)\\
= \dfrac{n}{2}\left( {2a + 2d + nd - d} \right)\\
= \dfrac{n}{2}\left( {2a + nd + d} \right)\\
= \dfrac{n}{2}\left( {2a + \left( {n + 1} \right)d} \right)
$
Where, $ {P_n} $ is the sum of n terms of the series.
According to the question, $ {S_n} $ is the sum of the cube of first n terms of the series then we get,
$ {S_n} = {\left( {a + d} \right)^3} + {\left( {a + 2d} \right)^3} + ......... + {\left( {a + nd} \right)^3} $
By using the identity
$ {\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} $ then we get,
$\Rightarrow {S_n} = \left( {{a^3} + 3{a^2}d + 3a{d^2} + {d^3}} \right) + \left( {{a^3} + 6{a^2}d + 12a{d^2} + 8{d^3}} \right) + ......... + \left( {{a^3} + 3n{a^2}d + 3{n^2}a{d^2} + {n^3}{d^3}} \right)\\
\Rightarrow {S_n} = {a^3} + 3{a^2}d + 3a{d^2} + {d^3} + {a^3} + 6{a^2}d + 12a{d^2} + 8{d^3} + ......... + {a^3} + 3n{a^2}d + 3{n^2}a{d^2} + {n^3}{d^3}$
As we know that the series is extend upto nth term but having similar pattern so taking out the common thing then we get,
$ \Rightarrow {S_n} = n{a^3} + 3{a^2}d\left( {1 + 2 + 3 + ... + n} \right) + 3a{d^2}\left( {{1^2} + {2^2} + {3^2} + .... + {n^2}} \right) + {d^3}\left( {{1^3} + {2^3} + {3^3} + .... + {n^3}} \right)\\
{S_n} = n{a^3} + 3{a^2}d\sum n + 3a{d^2}\sum {{n^2}} + {d^3}\sum {{n^3}} $
We know that,
$
\Rightarrow \sum n = \dfrac{{n\left( {n - 1} \right)}}{2}\\
\Rightarrow \sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\\
\Rightarrow \sum {{n^3}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}
$
Substituting these values in the equation then we get,
$\Rightarrow {S_n} = n{a^3} + 3{a^2}d\dfrac{{n\left( {n - 1} \right)}}{2} + 3a{d^2}\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + {d^3}\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4} $
This the required equation of sum of cube of first n terms of the A.P series.
Taking $ \dfrac{n}{4} $ common from all the terms of the equation then we get,
$\Rightarrow {S_n} = \dfrac{n}{4}\left( {4{a^3} + 6{a^2}d\left( {n - 1} \right) + \dfrac{{a{d^2}}}{2}\left( {n + 1} \right)\left( {2n + 1} \right) + {d^3}n{{\left( {n + 1} \right)}^2}} \right) $
Taking $ \left( {2a + \left( {n + 1} \right)d} \right) $ common from the equation then we get,
$\Rightarrow {S_n} = \dfrac{n}{4}\left( {2a + \left( {n + 1} \right)d} \right)\left( {2{a^2} + 2ad\left( {n + 1} \right) + {d^2}n{{\left( {n + 1} \right)}^2}} \right) $
Where, $ {P_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) $ so, substituting the value then we get,
$\Rightarrow {S_n} = \dfrac{n}{2}{P_n}\left( {2{a^2} + 2ad\left( {n + 1} \right) + {d^2}n{{\left( {n + 1} \right)}^2}} \right) $
Hence we can say that the sum of the n terms of the series which is in A.P form is the factor of the sum of cube of first n terms of the same series.
Note: The series for cube and square of first n terms of special series or arithmetic series can be carried out directly by using the summation formulas which are as follow:
$
\sum n = \dfrac{{n\left( {n - 1} \right)}}{2}\\
\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\\
\sum {{n^3}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}
$
Complete step-by-step answer:
Consider, an A.P be $ \left( {a + d} \right) + \left( {a + 2d} \right) + \left( {a + 3d} \right) + ......... + \left( {a + nd} \right) $
Here, a common difference is not added with the first terms.
As we know that he sum of the A.P is carried out as:
$
{P_n} = \dfrac{n}{2}\left( {2\left( {a + d} \right) + \left( {n - 1} \right)d} \right)\\
= \dfrac{n}{2}\left( {2a + 2d + nd - d} \right)\\
= \dfrac{n}{2}\left( {2a + nd + d} \right)\\
= \dfrac{n}{2}\left( {2a + \left( {n + 1} \right)d} \right)
$
Where, $ {P_n} $ is the sum of n terms of the series.
According to the question, $ {S_n} $ is the sum of the cube of first n terms of the series then we get,
$ {S_n} = {\left( {a + d} \right)^3} + {\left( {a + 2d} \right)^3} + ......... + {\left( {a + nd} \right)^3} $
By using the identity
$ {\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} $ then we get,
$\Rightarrow {S_n} = \left( {{a^3} + 3{a^2}d + 3a{d^2} + {d^3}} \right) + \left( {{a^3} + 6{a^2}d + 12a{d^2} + 8{d^3}} \right) + ......... + \left( {{a^3} + 3n{a^2}d + 3{n^2}a{d^2} + {n^3}{d^3}} \right)\\
\Rightarrow {S_n} = {a^3} + 3{a^2}d + 3a{d^2} + {d^3} + {a^3} + 6{a^2}d + 12a{d^2} + 8{d^3} + ......... + {a^3} + 3n{a^2}d + 3{n^2}a{d^2} + {n^3}{d^3}$
As we know that the series is extend upto nth term but having similar pattern so taking out the common thing then we get,
$ \Rightarrow {S_n} = n{a^3} + 3{a^2}d\left( {1 + 2 + 3 + ... + n} \right) + 3a{d^2}\left( {{1^2} + {2^2} + {3^2} + .... + {n^2}} \right) + {d^3}\left( {{1^3} + {2^3} + {3^3} + .... + {n^3}} \right)\\
{S_n} = n{a^3} + 3{a^2}d\sum n + 3a{d^2}\sum {{n^2}} + {d^3}\sum {{n^3}} $
We know that,
$
\Rightarrow \sum n = \dfrac{{n\left( {n - 1} \right)}}{2}\\
\Rightarrow \sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\\
\Rightarrow \sum {{n^3}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}
$
Substituting these values in the equation then we get,
$\Rightarrow {S_n} = n{a^3} + 3{a^2}d\dfrac{{n\left( {n - 1} \right)}}{2} + 3a{d^2}\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + {d^3}\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4} $
This the required equation of sum of cube of first n terms of the A.P series.
Taking $ \dfrac{n}{4} $ common from all the terms of the equation then we get,
$\Rightarrow {S_n} = \dfrac{n}{4}\left( {4{a^3} + 6{a^2}d\left( {n - 1} \right) + \dfrac{{a{d^2}}}{2}\left( {n + 1} \right)\left( {2n + 1} \right) + {d^3}n{{\left( {n + 1} \right)}^2}} \right) $
Taking $ \left( {2a + \left( {n + 1} \right)d} \right) $ common from the equation then we get,
$\Rightarrow {S_n} = \dfrac{n}{4}\left( {2a + \left( {n + 1} \right)d} \right)\left( {2{a^2} + 2ad\left( {n + 1} \right) + {d^2}n{{\left( {n + 1} \right)}^2}} \right) $
Where, $ {P_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) $ so, substituting the value then we get,
$\Rightarrow {S_n} = \dfrac{n}{2}{P_n}\left( {2{a^2} + 2ad\left( {n + 1} \right) + {d^2}n{{\left( {n + 1} \right)}^2}} \right) $
Hence we can say that the sum of the n terms of the series which is in A.P form is the factor of the sum of cube of first n terms of the same series.
Note: The series for cube and square of first n terms of special series or arithmetic series can be carried out directly by using the summation formulas which are as follow:
$
\sum n = \dfrac{{n\left( {n - 1} \right)}}{2}\\
\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\\
\sum {{n^3}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}
$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

