
How do you find the sum of the infinite series $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}} $ ?
Answer
534k+ views
Hint: We first get the terms using the general terms of the series. Then we find the first term $ {{t}_{1}} $ and common ratio $ r $ . We use the formula of sum of infinite G.P. to find the final solution for $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}} $.
Complete step by step solution:
The given series $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}} $ is an infinite G.P. series. We can write it as $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}}=6\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}} $ .
We express the geometric sequence in its general form.
We express the terms as $ {{t}_{n}} $ , the $ {{n}^{th}} $ term of the series $ \sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}} $ .
Now we place consecutive natural numbers for $ i $ as $ 1,2,3,4,... $ to get the sequence as
\[{{\left( \dfrac{1}{10} \right)}^{1}},{{\left( \dfrac{1}{10} \right)}^{2}},{{\left( \dfrac{1}{10} \right)}^{3}},{{\left( \dfrac{1}{10} \right)}^{4}},......\]. The first term be $ {{t}_{1}} $ and the common ratio be $ r $ where $ r=\dfrac{{{t}_{2}}}{{{t}_{1}}}=\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{{t}_{4}}}{{{t}_{3}}} $ . Here $ {{t}_{1}}=\left( \dfrac{1}{10} \right) $ and $ r=\left( \dfrac{1}{10} \right)<1 $ .
We can express the general term $ {{t}_{n}} $ based on the first term and the common ratio.
The formula being $ {{t}_{n}}={{t}_{1}}{{r}^{n-1}} $ .
If we assume the sum of the infinite G.P as $ {{S}_{\infty }} $ then for the value of $ \left| r \right|<1 $ , the sum of the infinite terms of the G.P. is $ {{S}_{\infty }}=\dfrac{{{t}_{1}}}{1-r} $ .
Putting the values, we get \[{{S}_{\infty }}=\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}}=\dfrac{\dfrac{1}{10}}{1-\dfrac{1}{10}}=\dfrac{1}{10}\times \dfrac{10}{9}=\dfrac{1}{9}\].
The final solution is $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}}=6\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}}=\dfrac{6}{9}=\dfrac{2}{3} $ .
So, the correct answer is “$\dfrac{2}{3} $”.
Note: The sequence is a decreasing sequence where the common ratio is a value of less than 1. The common difference will never be calculated according to the difference of greater number from the lesser number. The ratio formula should always be according $ r=\dfrac{{{t}_{2}}}{{{t}_{1}}}=\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{{t}_{4}}}{{{t}_{3}}} $ .
Complete step by step solution:
The given series $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}} $ is an infinite G.P. series. We can write it as $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}}=6\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}} $ .
We express the geometric sequence in its general form.
We express the terms as $ {{t}_{n}} $ , the $ {{n}^{th}} $ term of the series $ \sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}} $ .
Now we place consecutive natural numbers for $ i $ as $ 1,2,3,4,... $ to get the sequence as
\[{{\left( \dfrac{1}{10} \right)}^{1}},{{\left( \dfrac{1}{10} \right)}^{2}},{{\left( \dfrac{1}{10} \right)}^{3}},{{\left( \dfrac{1}{10} \right)}^{4}},......\]. The first term be $ {{t}_{1}} $ and the common ratio be $ r $ where $ r=\dfrac{{{t}_{2}}}{{{t}_{1}}}=\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{{t}_{4}}}{{{t}_{3}}} $ . Here $ {{t}_{1}}=\left( \dfrac{1}{10} \right) $ and $ r=\left( \dfrac{1}{10} \right)<1 $ .
We can express the general term $ {{t}_{n}} $ based on the first term and the common ratio.
The formula being $ {{t}_{n}}={{t}_{1}}{{r}^{n-1}} $ .
If we assume the sum of the infinite G.P as $ {{S}_{\infty }} $ then for the value of $ \left| r \right|<1 $ , the sum of the infinite terms of the G.P. is $ {{S}_{\infty }}=\dfrac{{{t}_{1}}}{1-r} $ .
Putting the values, we get \[{{S}_{\infty }}=\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}}=\dfrac{\dfrac{1}{10}}{1-\dfrac{1}{10}}=\dfrac{1}{10}\times \dfrac{10}{9}=\dfrac{1}{9}\].
The final solution is $ \sum\limits_{i=1}^{\infty }{6{{\left( \dfrac{1}{10} \right)}^{i}}}=6\sum\limits_{i=1}^{\infty }{{{\left( \dfrac{1}{10} \right)}^{i}}}=\dfrac{6}{9}=\dfrac{2}{3} $ .
So, the correct answer is “$\dfrac{2}{3} $”.
Note: The sequence is a decreasing sequence where the common ratio is a value of less than 1. The common difference will never be calculated according to the difference of greater number from the lesser number. The ratio formula should always be according $ r=\dfrac{{{t}_{2}}}{{{t}_{1}}}=\dfrac{{{t}_{3}}}{{{t}_{2}}}=\dfrac{{{t}_{4}}}{{{t}_{3}}} $ .
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

What are the major achievements of the UNO class 9 social science CBSE

Explain the importance of pH in everyday life class 9 chemistry CBSE

Differentiate between parenchyma collenchyma and sclerenchyma class 9 biology CBSE

Give 5 examples of refraction of light in daily life


