
Find the sum of the infinite series: \[\dfrac{1.2}{3}+\dfrac{2.3}{{{3}^{2}}}+\dfrac{3.4}{{{3}^{3}}}+\dfrac{4.5}{{{3}^{4}}}+.....\]
Answer
585.3k+ views
Hint: The given series doesn’t fall in any kind of known sum of series. So, we need to change its form by using multiplication. We slide 1 number and subtract them. We keep continuing this process until we get a solution of known formula. As the sum is infinite, all the elements will follow the rules applied.
Complete answer:
We try to find out the general term of the equation from looking at the form.
So, ${{t}_{n}}$ be the nth term of the sequence.
Then ${{t}_{1}}=\dfrac{1.2}{{{3}^{1}}}=\dfrac{1.\left( 1+1 \right)}{{{3}^{1}}}$, ${{t}_{2}}=\dfrac{2.3}{{{3}^{2}}}=\dfrac{2.\left( 2+1 \right)}{{{3}^{2}}}$, ${{t}_{3}}=\dfrac{3.4}{{{3}^{3}}}=\dfrac{3.\left( 3+1 \right)}{{{3}^{3}}}$, ${{t}_{4}}=\dfrac{4.5}{{{3}^{4}}}=\dfrac{4.\left( 4+1 \right)}{{{3}^{4}}}$.
So, the general term will be ${{t}_{n}}=\dfrac{n.\left( n+1 \right)}{{{3}^{n}}}$.
So, the sum of the series be ${{S}_{n}}=\sum\limits_{n=1}^{\infty }{{{t}_{n}}}$. We multiply both sides with $\dfrac{1}{3}$ to get $\dfrac{1}{3}{{S}_{n}}=\sum\limits_{n=1}^{\infty }{\dfrac{{{t}_{n}}}{3}}$.
We have two equations ${{S}_{n}}=\sum\limits_{n=1}^{\infty }{{{t}_{n}}}=\dfrac{1.2}{3}+\dfrac{2.3}{{{3}^{2}}}+\dfrac{3.4}{{{3}^{3}}}+\dfrac{4.5}{{{3}^{4}}}+.....$ and $\dfrac{1}{3}{{S}_{n}}=\sum\limits_{n=1}^{\infty }{\dfrac{{{t}_{n}}}{3}}=\dfrac{1.2}{{{3}^{2}}}+\dfrac{2.3}{{{3}^{3}}}+\dfrac{3.4}{{{3}^{4}}}+\dfrac{4.5}{{{3}^{5}}}+.....$.
We subtract second equation from the first one and follow the denominator of the individual elements to subtract them to get a new series
\[\begin{align}
& {{S}_{n}}-\dfrac{1}{3}{{S}_{n}}=\left( \dfrac{1.2}{3}+\dfrac{2.3}{{{3}^{2}}}+\dfrac{3.4}{{{3}^{3}}}+\dfrac{4.5}{{{3}^{4}}}+..... \right)-\left( \dfrac{1.2}{{{3}^{2}}}+\dfrac{2.3}{{{3}^{3}}}+\dfrac{3.4}{{{3}^{4}}}+\dfrac{4.5}{{{3}^{5}}}+..... \right) \\
& \Rightarrow \dfrac{2}{3}{{S}_{n}}=\left[ \dfrac{1.2}{3}+\left( \dfrac{2.3}{{{3}^{2}}}-\dfrac{1.2}{{{3}^{2}}} \right)+\left( \dfrac{3.4}{{{3}^{3}}}-\dfrac{2.3}{{{3}^{3}}} \right)+\left( \dfrac{4.5}{{{3}^{4}}}-\dfrac{3.4}{{{3}^{4}}} \right)+..... \right] \\
& \Rightarrow \dfrac{2}{3}{{S}_{n}}=\left[ \dfrac{1.2}{3}+\dfrac{2.2}{{{3}^{2}}}+\dfrac{3.2}{{{3}^{3}}}+\dfrac{4.2}{{{3}^{4}}}+..... \right] \\
\end{align}\]
We get a new sum of infinite series \[{{S}_{n}}=\left[ 1+\dfrac{2}{3}+\dfrac{3}{{{3}^{2}}}+\dfrac{4}{{{3}^{3}}}+..... \right]\].
The whole previous process, we apply 1 more time. We multiply the series with $\dfrac{1}{3}$.
We get \[\dfrac{1}{3}{{S}_{n}}=\left[ \dfrac{2}{3}+\dfrac{2}{{{3}^{2}}}+\dfrac{3}{{{3}^{3}}}+\dfrac{4}{{{3}^{4}}}+..... \right]\]
We subtract second equation from the first one and follow the denominator of the individual elements to subtract them.
\[\begin{align}
& {{S}_{n}}-\dfrac{1}{3}{{S}_{n}}=\left[ 1+\dfrac{2}{3}+\dfrac{3}{{{3}^{2}}}+\dfrac{4}{{{3}^{3}}}+..... \right]-\left[ \dfrac{2}{3}+\dfrac{2}{{{3}^{2}}}+\dfrac{3}{{{3}^{3}}}+\dfrac{4}{{{3}^{4}}}+..... \right] \\
& \Rightarrow \dfrac{1}{3}{{S}_{n}}=\dfrac{2}{3}+\left( 1-\dfrac{2}{3} \right)+\left( \dfrac{3}{{{3}^{2}}}-\dfrac{2}{{{3}^{2}}} \right)+\left( \dfrac{4}{{{3}^{3}}}-\dfrac{3}{{{3}^{3}}} \right)+..... \\
& \Rightarrow \dfrac{1}{3}{{S}_{n}}=\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+..... \\
& \Rightarrow \dfrac{{{S}_{n}}}{3}=1+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+..... \\
& \Rightarrow \dfrac{{{S}_{n}}}{3}+\dfrac{1}{3}=1+\dfrac{1}{3}+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+..... \\
\end{align}\]
So, the right side of the equation becomes a sum of infinite G.P. whose common ratio is less than 1.
So, \[\dfrac{{{S}_{n}}+1}{3}=1+\dfrac{1}{3}+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+.....=\dfrac{1}{1-\dfrac{1}{3}}=\dfrac{3}{2}\]. The formula for infinite G.P. is $\dfrac{a}{1-r}$ where a = first element and r is the common ratio.
Now we get the solution of the series as \[\dfrac{{{S}_{n}}+1}{3}=\dfrac{3}{2}\Rightarrow {{S}_{n}}=\dfrac{3\times 3}{2}-1=\dfrac{7}{2}\].
So, the sum of the infinite series: \[\dfrac{1.2}{3}+\dfrac{2.3}{{{3}^{2}}}+\dfrac{3.4}{{{3}^{3}}}+\dfrac{4.5}{{{3}^{4}}}+.....\] is $\dfrac{7}{2}$.
Note:
We don’t need to go to all the end of the series. The starting number pattern will tell us the general terms of the series. Also, need to be careful about the subtraction method we are applying here. The common ration r in the final G.P. series has to be in the form $\left| r \right|<1$. So, we need to be careful about it.
Complete answer:
We try to find out the general term of the equation from looking at the form.
So, ${{t}_{n}}$ be the nth term of the sequence.
Then ${{t}_{1}}=\dfrac{1.2}{{{3}^{1}}}=\dfrac{1.\left( 1+1 \right)}{{{3}^{1}}}$, ${{t}_{2}}=\dfrac{2.3}{{{3}^{2}}}=\dfrac{2.\left( 2+1 \right)}{{{3}^{2}}}$, ${{t}_{3}}=\dfrac{3.4}{{{3}^{3}}}=\dfrac{3.\left( 3+1 \right)}{{{3}^{3}}}$, ${{t}_{4}}=\dfrac{4.5}{{{3}^{4}}}=\dfrac{4.\left( 4+1 \right)}{{{3}^{4}}}$.
So, the general term will be ${{t}_{n}}=\dfrac{n.\left( n+1 \right)}{{{3}^{n}}}$.
So, the sum of the series be ${{S}_{n}}=\sum\limits_{n=1}^{\infty }{{{t}_{n}}}$. We multiply both sides with $\dfrac{1}{3}$ to get $\dfrac{1}{3}{{S}_{n}}=\sum\limits_{n=1}^{\infty }{\dfrac{{{t}_{n}}}{3}}$.
We have two equations ${{S}_{n}}=\sum\limits_{n=1}^{\infty }{{{t}_{n}}}=\dfrac{1.2}{3}+\dfrac{2.3}{{{3}^{2}}}+\dfrac{3.4}{{{3}^{3}}}+\dfrac{4.5}{{{3}^{4}}}+.....$ and $\dfrac{1}{3}{{S}_{n}}=\sum\limits_{n=1}^{\infty }{\dfrac{{{t}_{n}}}{3}}=\dfrac{1.2}{{{3}^{2}}}+\dfrac{2.3}{{{3}^{3}}}+\dfrac{3.4}{{{3}^{4}}}+\dfrac{4.5}{{{3}^{5}}}+.....$.
We subtract second equation from the first one and follow the denominator of the individual elements to subtract them to get a new series
\[\begin{align}
& {{S}_{n}}-\dfrac{1}{3}{{S}_{n}}=\left( \dfrac{1.2}{3}+\dfrac{2.3}{{{3}^{2}}}+\dfrac{3.4}{{{3}^{3}}}+\dfrac{4.5}{{{3}^{4}}}+..... \right)-\left( \dfrac{1.2}{{{3}^{2}}}+\dfrac{2.3}{{{3}^{3}}}+\dfrac{3.4}{{{3}^{4}}}+\dfrac{4.5}{{{3}^{5}}}+..... \right) \\
& \Rightarrow \dfrac{2}{3}{{S}_{n}}=\left[ \dfrac{1.2}{3}+\left( \dfrac{2.3}{{{3}^{2}}}-\dfrac{1.2}{{{3}^{2}}} \right)+\left( \dfrac{3.4}{{{3}^{3}}}-\dfrac{2.3}{{{3}^{3}}} \right)+\left( \dfrac{4.5}{{{3}^{4}}}-\dfrac{3.4}{{{3}^{4}}} \right)+..... \right] \\
& \Rightarrow \dfrac{2}{3}{{S}_{n}}=\left[ \dfrac{1.2}{3}+\dfrac{2.2}{{{3}^{2}}}+\dfrac{3.2}{{{3}^{3}}}+\dfrac{4.2}{{{3}^{4}}}+..... \right] \\
\end{align}\]
We get a new sum of infinite series \[{{S}_{n}}=\left[ 1+\dfrac{2}{3}+\dfrac{3}{{{3}^{2}}}+\dfrac{4}{{{3}^{3}}}+..... \right]\].
The whole previous process, we apply 1 more time. We multiply the series with $\dfrac{1}{3}$.
We get \[\dfrac{1}{3}{{S}_{n}}=\left[ \dfrac{2}{3}+\dfrac{2}{{{3}^{2}}}+\dfrac{3}{{{3}^{3}}}+\dfrac{4}{{{3}^{4}}}+..... \right]\]
We subtract second equation from the first one and follow the denominator of the individual elements to subtract them.
\[\begin{align}
& {{S}_{n}}-\dfrac{1}{3}{{S}_{n}}=\left[ 1+\dfrac{2}{3}+\dfrac{3}{{{3}^{2}}}+\dfrac{4}{{{3}^{3}}}+..... \right]-\left[ \dfrac{2}{3}+\dfrac{2}{{{3}^{2}}}+\dfrac{3}{{{3}^{3}}}+\dfrac{4}{{{3}^{4}}}+..... \right] \\
& \Rightarrow \dfrac{1}{3}{{S}_{n}}=\dfrac{2}{3}+\left( 1-\dfrac{2}{3} \right)+\left( \dfrac{3}{{{3}^{2}}}-\dfrac{2}{{{3}^{2}}} \right)+\left( \dfrac{4}{{{3}^{3}}}-\dfrac{3}{{{3}^{3}}} \right)+..... \\
& \Rightarrow \dfrac{1}{3}{{S}_{n}}=\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+..... \\
& \Rightarrow \dfrac{{{S}_{n}}}{3}=1+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+..... \\
& \Rightarrow \dfrac{{{S}_{n}}}{3}+\dfrac{1}{3}=1+\dfrac{1}{3}+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+..... \\
\end{align}\]
So, the right side of the equation becomes a sum of infinite G.P. whose common ratio is less than 1.
So, \[\dfrac{{{S}_{n}}+1}{3}=1+\dfrac{1}{3}+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+.....=\dfrac{1}{1-\dfrac{1}{3}}=\dfrac{3}{2}\]. The formula for infinite G.P. is $\dfrac{a}{1-r}$ where a = first element and r is the common ratio.
Now we get the solution of the series as \[\dfrac{{{S}_{n}}+1}{3}=\dfrac{3}{2}\Rightarrow {{S}_{n}}=\dfrac{3\times 3}{2}-1=\dfrac{7}{2}\].
So, the sum of the infinite series: \[\dfrac{1.2}{3}+\dfrac{2.3}{{{3}^{2}}}+\dfrac{3.4}{{{3}^{3}}}+\dfrac{4.5}{{{3}^{4}}}+.....\] is $\dfrac{7}{2}$.
Note:
We don’t need to go to all the end of the series. The starting number pattern will tell us the general terms of the series. Also, need to be careful about the subtraction method we are applying here. The common ration r in the final G.P. series has to be in the form $\left| r \right|<1$. So, we need to be careful about it.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

