
Find the sum of the infinite A.G.P: 3, 4, 4, $\dfrac{32}{9}$, …
(a) 16
(b) 16
(c) 24
(d) 27
Answer
601.5k+ views
Hint: A general infinite A.G.P. can be written as the following: $a+\left( a+d \right)r+\left( a+2d \right){{r}^{2}}+...+\infty $. Compare this to the given series to find a = 3. Use the fact that the second and the third term are the same. So, $\left( 3+d \right)r=\left( 3+2d \right){{r}^{2}}=4$. Using this, find the value of r and d. Next, to find the summation of the A.G.P., multiply both sides by $\dfrac{2}{3}$ and subtract from the original equation. This will result in a G.P. Find the sum of this G.P. using \[S=\dfrac{a}{1-r}\]. Put this into the previous equation to get the final answer.
Complete step-by-step answer:
In this question, we are given the infinite A.G.P: 3, 4, 4, $\dfrac{32}{9}$, …
We need to find the sum of this infinite A.G.P.
First let us define what an A.G.P. actually is.
An arithmetic-geometric progression (A.G.P.) is a progression in which each term can be represented as the product of the terms of an arithmetic progressions (A.P.) and a geometric progressions (G.P.).
A general infinite A.G.P. can be written as the following:
$a+\left( a+d \right)r+\left( a+2d \right){{r}^{2}}+...+\infty $
In this question, we have the first term, a = 3
Also, we see that the second and the third term are the same. So, using this information, we will get the following:
$\left( 3+d \right)r=\left( 3+2d \right){{r}^{2}}=4$ ….(1)
On solving this, we get the following:
$\dfrac{4}{r}-3=\left( \dfrac{4}{{{r}^{2}}}-3 \right)\cdot \dfrac{1}{2}$
$\left( 4-3r \right)\cdot 2r=4-3{{r}^{2}}$
$3{{r}^{2}}-8r+4=0$
Factorising this by splitting the middle term, we will get the following:
$\left( r-2 \right)\left( 3r-2 \right)=0$
$r=2,\dfrac{2}{3}$
But we need to find a finite sum till infinite terms. So, r cannot be greater than 1. Hence, r = 2 is rejected.
Hence, $r=\dfrac{2}{3}$
Substituting this in equation (1), we will get the following:
$\left( 3+d \right)r=4$
$\left( 3+d \right)\cdot \dfrac{2}{3}=4$
$3+d=6$
$d=3$
Now, we will find the sum of the infinite series.
$S=3+6\cdot \dfrac{2}{3}+9{{\left( \dfrac{2}{3} \right)}^{2}}+...\infty $
Multiply both sides by $\dfrac{2}{3}$, we will get the following:
$\dfrac{2}{3}S=3\cdot \dfrac{2}{3}+6{{\left( \dfrac{2}{3} \right)}^{2}}+9{{\left( \dfrac{2}{3} \right)}^{3}}+...\infty $
Subtracting these two equations, we will get the following:
\[S\left( 1-\dfrac{2}{3} \right)=3+3\cdot \dfrac{2}{3}+3{{\left( \dfrac{2}{3} \right)}^{2}}+...\infty \]
Now, this is in the form of a G.P. The sum of an infinite G.P. with r < 1 is given by:
\[S=\dfrac{a}{1-r}\]
Using this formula, we will get the following:
\[\dfrac{S}{3}=\dfrac{3}{1-\tfrac{2}{3}}=9\]
\[S=27\]
So, the sum of the infinite A.G.P: 3, 4, 4, $\dfrac{32}{9}$, … is 27.
Hence, option (d) is correct.
Note: In this question, it is very important to what an A.G.P is. Also, it is important to know that a general infinite A.G.P. can be written as the following: $a+\left( a+d \right)r+\left( a+2d \right){{r}^{2}}+...+\infty $. It is very important to eliminate r = 2 here because if r = 2, then the sum of the series would extend to infinity.
Complete step-by-step answer:
In this question, we are given the infinite A.G.P: 3, 4, 4, $\dfrac{32}{9}$, …
We need to find the sum of this infinite A.G.P.
First let us define what an A.G.P. actually is.
An arithmetic-geometric progression (A.G.P.) is a progression in which each term can be represented as the product of the terms of an arithmetic progressions (A.P.) and a geometric progressions (G.P.).
A general infinite A.G.P. can be written as the following:
$a+\left( a+d \right)r+\left( a+2d \right){{r}^{2}}+...+\infty $
In this question, we have the first term, a = 3
Also, we see that the second and the third term are the same. So, using this information, we will get the following:
$\left( 3+d \right)r=\left( 3+2d \right){{r}^{2}}=4$ ….(1)
On solving this, we get the following:
$\dfrac{4}{r}-3=\left( \dfrac{4}{{{r}^{2}}}-3 \right)\cdot \dfrac{1}{2}$
$\left( 4-3r \right)\cdot 2r=4-3{{r}^{2}}$
$3{{r}^{2}}-8r+4=0$
Factorising this by splitting the middle term, we will get the following:
$\left( r-2 \right)\left( 3r-2 \right)=0$
$r=2,\dfrac{2}{3}$
But we need to find a finite sum till infinite terms. So, r cannot be greater than 1. Hence, r = 2 is rejected.
Hence, $r=\dfrac{2}{3}$
Substituting this in equation (1), we will get the following:
$\left( 3+d \right)r=4$
$\left( 3+d \right)\cdot \dfrac{2}{3}=4$
$3+d=6$
$d=3$
Now, we will find the sum of the infinite series.
$S=3+6\cdot \dfrac{2}{3}+9{{\left( \dfrac{2}{3} \right)}^{2}}+...\infty $
Multiply both sides by $\dfrac{2}{3}$, we will get the following:
$\dfrac{2}{3}S=3\cdot \dfrac{2}{3}+6{{\left( \dfrac{2}{3} \right)}^{2}}+9{{\left( \dfrac{2}{3} \right)}^{3}}+...\infty $
Subtracting these two equations, we will get the following:
\[S\left( 1-\dfrac{2}{3} \right)=3+3\cdot \dfrac{2}{3}+3{{\left( \dfrac{2}{3} \right)}^{2}}+...\infty \]
Now, this is in the form of a G.P. The sum of an infinite G.P. with r < 1 is given by:
\[S=\dfrac{a}{1-r}\]
Using this formula, we will get the following:
\[\dfrac{S}{3}=\dfrac{3}{1-\tfrac{2}{3}}=9\]
\[S=27\]
So, the sum of the infinite A.G.P: 3, 4, 4, $\dfrac{32}{9}$, … is 27.
Hence, option (d) is correct.
Note: In this question, it is very important to what an A.G.P is. Also, it is important to know that a general infinite A.G.P. can be written as the following: $a+\left( a+d \right)r+\left( a+2d \right){{r}^{2}}+...+\infty $. It is very important to eliminate r = 2 here because if r = 2, then the sum of the series would extend to infinity.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

