
Find the sum of the given expression.
\[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\].
Answer
519k+ views
Hint: Use the trigonometric formula of \[\tan \left( a-b \right)\]. Expand the formula and find the expression for \[\tan a\]and \[\tan b\]. Substitute in this expression for each term. And finally add and simplify them to get the sum.
Complete step-by-step answer:
We have been asked to find the sum of, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\].
If we take the first expression, \[\tan x\tan 2x\], there is a difference of x in these 2 terms.
Similarly, taking the \[{{2}^{nd}}\]expression, \[\tan 2x\tan 3x\], there is a difference of x.
Now let us use the trigonometric formula to solve the expression.
\[\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}\]
Now let us rearrange the formula, by cross multiplying them.
\[\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}\]
\[\begin{align}
& 1+\tan a\tan b=\dfrac{\tan a-\tan b}{\tan \left( a-b \right)} \\
& \tan a\tan b=\dfrac{\tan a-\tan b}{\tan \left( a-b \right)}-1 \\
& \therefore \tan a\tan b=\dfrac{\tan a-\tan b-\tan \left( a-b \right)}{\tan \left( a-b \right)}-(1) \\
\end{align}\]
Now according to this formula, if we are taking the value of \[\tan x\tan 2x\]in equation (1) then, taking \[\tan 2x\tan x\], where a = 2x, b = x.
\[\tan 2x\tan x=\dfrac{\tan 2x-\tan x-\tan \left( 2x-x \right)}{\tan \left( 2x-x \right)}\]
\[\begin{align}
& =\dfrac{\tan 2x-\tan x-\tan x}{\tan x} \\
& =\dfrac{\tan 2x-2\tan x}{\tan x} \\
\end{align}\]
Similarly, \[\tan 3x\tan x=\dfrac{\tan 3x-\tan 2x-\tan \left( 3x-2x \right)}{\tan \left( 3x-2x \right)}\]
\[=\dfrac{\tan 3x-\tan 2x-\tan x}{\tan x}\]
Similarly for, \[\tan \left( n+1 \right)x\tan x=\dfrac{\tan \left( n+1 \right)x-\tan nx-\tan \left( n+1-n \right)x}{\tan \left( n+1-n \right)x}\].
\[=\dfrac{\tan \left( n+1 \right)x-\tan nx-\tan x}{\tan x}\].
So, if we are adding all this expression together, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\]
\[=\dfrac{\tan 2x-\tan x-\tan x+\tan 3x-\tan 2x-\tan x+\tan 4x-\tan 3x-\tan x+.......+\tan \left( n+1 \right)x-\tan x-\tan x}{\tan x}\]
By cancelling out the like terms, \[\tan 2x,\tan 3x\]etc
\[\begin{align}
& =\dfrac{-\tan x-\tan x-\tan x-......+\tan \left( n+1 \right)x}{\tan x} \\
& =\dfrac{-\left( n+1 \right)\tan x+\tan \left( n+1 \right)x}{\tan x} \\
& =\dfrac{\tan \left( n+1 \right)x-\left( n+1 \right)\tan x}{\tan x} \\
\end{align}\]
So we got, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\].
\[=\dfrac{\tan \left( n+1 \right)x-\left( n+1 \right)\tan x}{\tan x}\]
Note: In a question like this remember to use the trigonometric formula \[\tan \left( a-b \right)\]without which this expression can’t be solved. Learn the formulae of basic trigonometric identities so that you might get an idea of which formula to use for questions like these.
Complete step-by-step answer:
We have been asked to find the sum of, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\].
If we take the first expression, \[\tan x\tan 2x\], there is a difference of x in these 2 terms.
Similarly, taking the \[{{2}^{nd}}\]expression, \[\tan 2x\tan 3x\], there is a difference of x.
Now let us use the trigonometric formula to solve the expression.
\[\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}\]
Now let us rearrange the formula, by cross multiplying them.
\[\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}\]
\[\begin{align}
& 1+\tan a\tan b=\dfrac{\tan a-\tan b}{\tan \left( a-b \right)} \\
& \tan a\tan b=\dfrac{\tan a-\tan b}{\tan \left( a-b \right)}-1 \\
& \therefore \tan a\tan b=\dfrac{\tan a-\tan b-\tan \left( a-b \right)}{\tan \left( a-b \right)}-(1) \\
\end{align}\]
Now according to this formula, if we are taking the value of \[\tan x\tan 2x\]in equation (1) then, taking \[\tan 2x\tan x\], where a = 2x, b = x.
\[\tan 2x\tan x=\dfrac{\tan 2x-\tan x-\tan \left( 2x-x \right)}{\tan \left( 2x-x \right)}\]
\[\begin{align}
& =\dfrac{\tan 2x-\tan x-\tan x}{\tan x} \\
& =\dfrac{\tan 2x-2\tan x}{\tan x} \\
\end{align}\]
Similarly, \[\tan 3x\tan x=\dfrac{\tan 3x-\tan 2x-\tan \left( 3x-2x \right)}{\tan \left( 3x-2x \right)}\]
\[=\dfrac{\tan 3x-\tan 2x-\tan x}{\tan x}\]
Similarly for, \[\tan \left( n+1 \right)x\tan x=\dfrac{\tan \left( n+1 \right)x-\tan nx-\tan \left( n+1-n \right)x}{\tan \left( n+1-n \right)x}\].
\[=\dfrac{\tan \left( n+1 \right)x-\tan nx-\tan x}{\tan x}\].
So, if we are adding all this expression together, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\]
\[=\dfrac{\tan 2x-\tan x-\tan x+\tan 3x-\tan 2x-\tan x+\tan 4x-\tan 3x-\tan x+.......+\tan \left( n+1 \right)x-\tan x-\tan x}{\tan x}\]
By cancelling out the like terms, \[\tan 2x,\tan 3x\]etc
\[\begin{align}
& =\dfrac{-\tan x-\tan x-\tan x-......+\tan \left( n+1 \right)x}{\tan x} \\
& =\dfrac{-\left( n+1 \right)\tan x+\tan \left( n+1 \right)x}{\tan x} \\
& =\dfrac{\tan \left( n+1 \right)x-\left( n+1 \right)\tan x}{\tan x} \\
\end{align}\]
So we got, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\].
\[=\dfrac{\tan \left( n+1 \right)x-\left( n+1 \right)\tan x}{\tan x}\]
Note: In a question like this remember to use the trigonometric formula \[\tan \left( a-b \right)\]without which this expression can’t be solved. Learn the formulae of basic trigonometric identities so that you might get an idea of which formula to use for questions like these.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
What is the modal class for the following table given class 11 maths CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE

Number of oneone functions from A to B where nA 4 and class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE
