
Find the sum of the given expression.
\[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\].
Answer
602.1k+ views
Hint: Use the trigonometric formula of \[\tan \left( a-b \right)\]. Expand the formula and find the expression for \[\tan a\]and \[\tan b\]. Substitute in this expression for each term. And finally add and simplify them to get the sum.
Complete step-by-step answer:
We have been asked to find the sum of, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\].
If we take the first expression, \[\tan x\tan 2x\], there is a difference of x in these 2 terms.
Similarly, taking the \[{{2}^{nd}}\]expression, \[\tan 2x\tan 3x\], there is a difference of x.
Now let us use the trigonometric formula to solve the expression.
\[\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}\]
Now let us rearrange the formula, by cross multiplying them.
\[\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}\]
\[\begin{align}
& 1+\tan a\tan b=\dfrac{\tan a-\tan b}{\tan \left( a-b \right)} \\
& \tan a\tan b=\dfrac{\tan a-\tan b}{\tan \left( a-b \right)}-1 \\
& \therefore \tan a\tan b=\dfrac{\tan a-\tan b-\tan \left( a-b \right)}{\tan \left( a-b \right)}-(1) \\
\end{align}\]
Now according to this formula, if we are taking the value of \[\tan x\tan 2x\]in equation (1) then, taking \[\tan 2x\tan x\], where a = 2x, b = x.
\[\tan 2x\tan x=\dfrac{\tan 2x-\tan x-\tan \left( 2x-x \right)}{\tan \left( 2x-x \right)}\]
\[\begin{align}
& =\dfrac{\tan 2x-\tan x-\tan x}{\tan x} \\
& =\dfrac{\tan 2x-2\tan x}{\tan x} \\
\end{align}\]
Similarly, \[\tan 3x\tan x=\dfrac{\tan 3x-\tan 2x-\tan \left( 3x-2x \right)}{\tan \left( 3x-2x \right)}\]
\[=\dfrac{\tan 3x-\tan 2x-\tan x}{\tan x}\]
Similarly for, \[\tan \left( n+1 \right)x\tan x=\dfrac{\tan \left( n+1 \right)x-\tan nx-\tan \left( n+1-n \right)x}{\tan \left( n+1-n \right)x}\].
\[=\dfrac{\tan \left( n+1 \right)x-\tan nx-\tan x}{\tan x}\].
So, if we are adding all this expression together, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\]
\[=\dfrac{\tan 2x-\tan x-\tan x+\tan 3x-\tan 2x-\tan x+\tan 4x-\tan 3x-\tan x+.......+\tan \left( n+1 \right)x-\tan x-\tan x}{\tan x}\]
By cancelling out the like terms, \[\tan 2x,\tan 3x\]etc
\[\begin{align}
& =\dfrac{-\tan x-\tan x-\tan x-......+\tan \left( n+1 \right)x}{\tan x} \\
& =\dfrac{-\left( n+1 \right)\tan x+\tan \left( n+1 \right)x}{\tan x} \\
& =\dfrac{\tan \left( n+1 \right)x-\left( n+1 \right)\tan x}{\tan x} \\
\end{align}\]
So we got, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\].
\[=\dfrac{\tan \left( n+1 \right)x-\left( n+1 \right)\tan x}{\tan x}\]
Note: In a question like this remember to use the trigonometric formula \[\tan \left( a-b \right)\]without which this expression can’t be solved. Learn the formulae of basic trigonometric identities so that you might get an idea of which formula to use for questions like these.
Complete step-by-step answer:
We have been asked to find the sum of, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\].
If we take the first expression, \[\tan x\tan 2x\], there is a difference of x in these 2 terms.
Similarly, taking the \[{{2}^{nd}}\]expression, \[\tan 2x\tan 3x\], there is a difference of x.
Now let us use the trigonometric formula to solve the expression.
\[\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}\]
Now let us rearrange the formula, by cross multiplying them.
\[\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}\]
\[\begin{align}
& 1+\tan a\tan b=\dfrac{\tan a-\tan b}{\tan \left( a-b \right)} \\
& \tan a\tan b=\dfrac{\tan a-\tan b}{\tan \left( a-b \right)}-1 \\
& \therefore \tan a\tan b=\dfrac{\tan a-\tan b-\tan \left( a-b \right)}{\tan \left( a-b \right)}-(1) \\
\end{align}\]
Now according to this formula, if we are taking the value of \[\tan x\tan 2x\]in equation (1) then, taking \[\tan 2x\tan x\], where a = 2x, b = x.
\[\tan 2x\tan x=\dfrac{\tan 2x-\tan x-\tan \left( 2x-x \right)}{\tan \left( 2x-x \right)}\]
\[\begin{align}
& =\dfrac{\tan 2x-\tan x-\tan x}{\tan x} \\
& =\dfrac{\tan 2x-2\tan x}{\tan x} \\
\end{align}\]
Similarly, \[\tan 3x\tan x=\dfrac{\tan 3x-\tan 2x-\tan \left( 3x-2x \right)}{\tan \left( 3x-2x \right)}\]
\[=\dfrac{\tan 3x-\tan 2x-\tan x}{\tan x}\]
Similarly for, \[\tan \left( n+1 \right)x\tan x=\dfrac{\tan \left( n+1 \right)x-\tan nx-\tan \left( n+1-n \right)x}{\tan \left( n+1-n \right)x}\].
\[=\dfrac{\tan \left( n+1 \right)x-\tan nx-\tan x}{\tan x}\].
So, if we are adding all this expression together, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\]
\[=\dfrac{\tan 2x-\tan x-\tan x+\tan 3x-\tan 2x-\tan x+\tan 4x-\tan 3x-\tan x+.......+\tan \left( n+1 \right)x-\tan x-\tan x}{\tan x}\]
By cancelling out the like terms, \[\tan 2x,\tan 3x\]etc
\[\begin{align}
& =\dfrac{-\tan x-\tan x-\tan x-......+\tan \left( n+1 \right)x}{\tan x} \\
& =\dfrac{-\left( n+1 \right)\tan x+\tan \left( n+1 \right)x}{\tan x} \\
& =\dfrac{\tan \left( n+1 \right)x-\left( n+1 \right)\tan x}{\tan x} \\
\end{align}\]
So we got, \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x\].
\[=\dfrac{\tan \left( n+1 \right)x-\left( n+1 \right)\tan x}{\tan x}\]
Note: In a question like this remember to use the trigonometric formula \[\tan \left( a-b \right)\]without which this expression can’t be solved. Learn the formulae of basic trigonometric identities so that you might get an idea of which formula to use for questions like these.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

