
Find the sum of the following series to \[n\] terms and to infinity: $\dfrac{1}{{1 \cdot 2}} + \dfrac{1}{{2 \cdot 3}} + \dfrac{1}{{3 \cdot 4}} + ......$
Answer
570k+ views
Hint: The given series $\dfrac{1}{{1 \cdot 2}} + \dfrac{1}{{2 \cdot 3}} + \dfrac{1}{{3 \cdot 4}} + ......$ follows a pattern, i.e., $\dfrac{1}{{n\left( {n + 1} \right)}}$. Therefore, in this case, the ${n^{th}}$ term is ${t_n} = \dfrac{1}{{n\left( {n + 1} \right)}}$. The sum of \[n\] terms of a series is calculate by the formula, ${S_n} = \sum\limits_{n = 1}^n {\left( {{t_n}} \right)} $, Whereas the sum of infinite ($\infty $) terms can be calculated by ${S_\infty } = \sum\limits_{n = 1}^\infty {\left( {{t_n}} \right)} $.
Complete step-by-step answer:
Given series is: $\dfrac{1}{{1 \cdot 2}} + \dfrac{1}{{2 \cdot 3}} + \dfrac{1}{{3 \cdot 4}} + ......$
The given series follows a pattern, i.e., $\dfrac{1}{{n\left( {n + 1} \right)}}$.
Therefore, the general term (${n^{th}}$term) of the given series is, ${t_n} = \dfrac{1}{{n\left( {n + 1} \right)}}$
For converting it into partial fraction, we can rewrite it as, ${t_n} = \dfrac{{n + 1 - n}}{{n\left( {n + 1} \right)}}$
or ${t_n} = \dfrac{{n + 1}}{{n\left( {n + 1} \right)}} - \dfrac{n}{{n\left( {n + 1} \right)}}$
$ \Rightarrow $${t_n} = \dfrac{1}{n} - \dfrac{1}{{\left( {n + 1} \right)}}$ …… (1)
(A) Sum of \[n\] terms of the given series:
The sum of \[n\] terms of a series is given by ,${S_n} = \sum\limits_{n = 1}^n {\left( {{t_n}} \right)} $
Therefore, sum of \[n\] terms is, ${S_n} = \sum\limits_{n = 1}^n {\left( {\dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)} $ [Using (1)]
$ \Rightarrow $${S_n} = \left( {\dfrac{1}{1} - \dfrac{1}{2}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{4}} \right) + .............. - \dfrac{1}{n} + \left( {\dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)$
All the terms were cancel out with each other except $\dfrac{1}{1}$ and $ - \dfrac{1}{{n + 1}}$,
$\therefore {S_n} = \dfrac{1}{1} - \dfrac{1}{{n + 1}}$
Now, solving the above equation by taking LCM,
$ \Rightarrow $${S_n} = \dfrac{{n + 1 - 1}}{{n + 1}}$
$ \Rightarrow $${S_n} = \dfrac{n}{{n + 1}}$
Hence, the sum of \[n\] terms of a given series is $\dfrac{n}{{n + 1}}$.
(B) Sum of infinity terms of the given series:
The sum of infinite terms of a series is given by,${S_\infty } = \sum\limits_{n = 1}^\infty {\left( {{t_n}} \right)} $
Therefore, sum of infinite terms is, ${S_\infty } = \sum\limits_{n = 1}^\infty {\left( {\dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)} $ [Using (1)]
$ \Rightarrow $${S_\infty } = \left( {\dfrac{1}{1} - \dfrac{1}{2}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{4}} \right) + .............. - \dfrac{1}{\infty } + \left( {\dfrac{1}{\infty } - \dfrac{1}{{\infty + 1}}} \right)$
All the terms were cancel out with each other except $\dfrac{1}{1}$ and $\dfrac{1}{{\infty + 1}}$,
$\therefore {S_\infty } = \dfrac{1}{1} - \dfrac{1}{{\infty + 1}}$
Since, $\dfrac{1}{\infty } = 0$$ \Rightarrow \dfrac{1}{{\infty + 1}} = 0$,
$ \Rightarrow $${S_\infty } = 1 - 0$
$ \Rightarrow $${S_\infty } = 1$
Hence, the sum of infinite terms of given series is $1$.
Note: In mathematics, the symbol $\sum {} $ is used for summation. The value below the sigma operator gives us the starting integer, while the top value gives us the upper bound.
For ex- $\sum\limits_{n = 1}^4 {{n^2} = {1^2} + } {2^2} + {3^2} + {4^2} = 1 + 4 + 9 + 16 = 30$.
Complete step-by-step answer:
Given series is: $\dfrac{1}{{1 \cdot 2}} + \dfrac{1}{{2 \cdot 3}} + \dfrac{1}{{3 \cdot 4}} + ......$
The given series follows a pattern, i.e., $\dfrac{1}{{n\left( {n + 1} \right)}}$.
Therefore, the general term (${n^{th}}$term) of the given series is, ${t_n} = \dfrac{1}{{n\left( {n + 1} \right)}}$
For converting it into partial fraction, we can rewrite it as, ${t_n} = \dfrac{{n + 1 - n}}{{n\left( {n + 1} \right)}}$
or ${t_n} = \dfrac{{n + 1}}{{n\left( {n + 1} \right)}} - \dfrac{n}{{n\left( {n + 1} \right)}}$
$ \Rightarrow $${t_n} = \dfrac{1}{n} - \dfrac{1}{{\left( {n + 1} \right)}}$ …… (1)
(A) Sum of \[n\] terms of the given series:
The sum of \[n\] terms of a series is given by ,${S_n} = \sum\limits_{n = 1}^n {\left( {{t_n}} \right)} $
Therefore, sum of \[n\] terms is, ${S_n} = \sum\limits_{n = 1}^n {\left( {\dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)} $ [Using (1)]
$ \Rightarrow $${S_n} = \left( {\dfrac{1}{1} - \dfrac{1}{2}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{4}} \right) + .............. - \dfrac{1}{n} + \left( {\dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)$
All the terms were cancel out with each other except $\dfrac{1}{1}$ and $ - \dfrac{1}{{n + 1}}$,
$\therefore {S_n} = \dfrac{1}{1} - \dfrac{1}{{n + 1}}$
Now, solving the above equation by taking LCM,
$ \Rightarrow $${S_n} = \dfrac{{n + 1 - 1}}{{n + 1}}$
$ \Rightarrow $${S_n} = \dfrac{n}{{n + 1}}$
Hence, the sum of \[n\] terms of a given series is $\dfrac{n}{{n + 1}}$.
(B) Sum of infinity terms of the given series:
The sum of infinite terms of a series is given by,${S_\infty } = \sum\limits_{n = 1}^\infty {\left( {{t_n}} \right)} $
Therefore, sum of infinite terms is, ${S_\infty } = \sum\limits_{n = 1}^\infty {\left( {\dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)} $ [Using (1)]
$ \Rightarrow $${S_\infty } = \left( {\dfrac{1}{1} - \dfrac{1}{2}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{4}} \right) + .............. - \dfrac{1}{\infty } + \left( {\dfrac{1}{\infty } - \dfrac{1}{{\infty + 1}}} \right)$
All the terms were cancel out with each other except $\dfrac{1}{1}$ and $\dfrac{1}{{\infty + 1}}$,
$\therefore {S_\infty } = \dfrac{1}{1} - \dfrac{1}{{\infty + 1}}$
Since, $\dfrac{1}{\infty } = 0$$ \Rightarrow \dfrac{1}{{\infty + 1}} = 0$,
$ \Rightarrow $${S_\infty } = 1 - 0$
$ \Rightarrow $${S_\infty } = 1$
Hence, the sum of infinite terms of given series is $1$.
Note: In mathematics, the symbol $\sum {} $ is used for summation. The value below the sigma operator gives us the starting integer, while the top value gives us the upper bound.
For ex- $\sum\limits_{n = 1}^4 {{n^2} = {1^2} + } {2^2} + {3^2} + {4^2} = 1 + 4 + 9 + 16 = 30$.
Recently Updated Pages
Consider an infinite distribution of point masses each class 11 physics CBSE

You are provided with the seeds of a gram wheat rice class 11 biology CBSE

Amit buys a few grams of gold at the poles as per the class 11 physics CBSE

The ratio of the number of hybrid and pure orbitals class 11 chemistry CBSE

Explain how rainwater harvesting can help in water class 11 biology CBSE

Briefly mention the mechanism of action of FSH class 11 biology CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

