
Find the sum of the following arithmetic progression.
to terms.
Answer
528.9k+ views
Hint:
Here, they have given an arithmetic series and they are asking to find the arithmetic progression. So, we have a formula to find the sum of terms of an arithmetic progression that is given by: . By using this formula we can get the required answer.
Complete Step by Step Solution:
In the given problem they have given an arithmetic progression, and asking us to find sum of the arithmetic progression.
In order to find the sum of terms of an arithmetic progression we have a formula, given by
Where is the sum of terms.
number of terms.
first term of the given arithmetic progression.
common difference of the arithmetic progression.
The series is given by to terms.
From the given arithmetic progression, we can say that
Number of terms
The first term of the given arithmetic progression i.e.,
Now, to find the common difference that is , we follow the following procedure or formula
Here, and , by substituting these values, we get
Now, by substituting the values of and in the sum of terms of an arithmetic progression formula, we get
On simplifying the above equation,
Therefore the sum of the arithmetic progression that is to terms is .
Note:
If you want to cross verify the answer, or if you are not able to recall the formula then we can find the entire series, that is from the given expression to terms, we can notice that there is a difference of for every number so by using this difference first try to find the entire series then by adding these we can get the answer to cross verify.
Here, they have given an arithmetic series and they are asking to find the arithmetic progression. So, we have a formula to find the sum of
Complete Step by Step Solution:
In the given problem they have given an arithmetic progression, and asking us to find sum of the arithmetic progression.
In order to find the sum of
Where
The series is given by
From the given arithmetic progression, we can say that
Number of terms
The first term of the given arithmetic progression i.e.,
Now, to find the common difference that is
Now, by substituting the values of
On simplifying the above equation,
Therefore the sum of the arithmetic progression that is
Note:
If you want to cross verify the answer, or if you are not able to recall the formula then we can find the entire series, that is from the given expression
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The largest lake in India is AWular BSambhar CChilka class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE
