
How do you find the sum of the finite geometric sequence of $\sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} $?
Answer
556.5k+ views
Hint: Firstly, write the formula for the sum of the finite geometric sequence. We should then compare the variables with that of the formula one’s and then substitute in the formula. Keep evaluating to get the final answer, the sum.
Formula used: The sum of a finite geometric progression is given by the formula, $\dfrac{{a(1 - {r^n})}}{{(1 - r)}}$
Where $a$ is the first term,$n$ is the number of terms, and $r$is the ratio between any two consecutive terms.
Complete step-by-step solution:
The given finite geometric sequence is $\sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} $
The question is to find the sum of the geometric sequence which can be found out by using the formula, $\sum\limits_{j = 1}^n {a{r^{j - 1}}} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}$ Where $a$ is the first term,$n$ is the number of terms, and $r$is the ratio between any two consecutive terms.
Now, we compare the variables in the formula with our given geometric sequence.
$\sum\limits_{j = 1}^n {a{r^{j - 1}}} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}$
$ \Rightarrow \sum\limits_{j = 1}^n {a{r^{j - 1}} = \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} } $
Here, $a = 32;n = 6;r = \dfrac{1}{4}$
On substituting in, $\dfrac{{a(1 - {r^n})}}{{(1 - r)}}$we get,
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{32\left( {1 - {{\left( {\dfrac{1}{4}} \right)}^6}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
Now we first evaluate the power $6$ function.
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{32\left( {1 - \left( {\dfrac{1}{{{4^6}}}} \right)} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{32\left( {1 - \left( {\dfrac{1}{{4096}}} \right)} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
Now we evaluate the numerator part.
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{32\left( {\dfrac{{4096 - 1}}{{4096}}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
Progress to subtraction operation in the numerator and then multiply it with $32\;$
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{32\left( {\dfrac{{4095}}{{4096}}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
$4096\;$ when divided with $32\;$gives $128\;$.
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{\left( {\dfrac{{4095}}{{128}}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
Now, simplify the denominator.
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{\left( {\dfrac{{4095}}{{128}}} \right)}}{{\left( {\dfrac{3}{4}} \right)}}$
Evaluate the RHS and then simplify.
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{4095}}{{128}} \times \dfrac{4}{3}$
$128\;$when divided with $4$ we get $32\;$
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{4095}}{{32}} \times \dfrac{1}{3}$
$4095\;$ when divided with $3$ we get $1365\;$
So, on further simplifying we get,
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{1365}}{{32}}$
$\therefore $The sum of the finite geometric sequence $\sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} $ is $\dfrac{{1365}}{{32}}$.
Note: Whenever we are asked to give the sum of some finite geometric progression, always write the sequence in this format $\sum\limits_{j = 1}^n {a{r^{j - 1}}} $ to easily put the constants into the formula directly. If this step is skipped , we will have to find the first term separately, write the sequence up to $3$ terms to find the ratio of the geometric progression. So, avoid this long method as it may result in mistakes.
Formula used: The sum of a finite geometric progression is given by the formula, $\dfrac{{a(1 - {r^n})}}{{(1 - r)}}$
Where $a$ is the first term,$n$ is the number of terms, and $r$is the ratio between any two consecutive terms.
Complete step-by-step solution:
The given finite geometric sequence is $\sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} $
The question is to find the sum of the geometric sequence which can be found out by using the formula, $\sum\limits_{j = 1}^n {a{r^{j - 1}}} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}$ Where $a$ is the first term,$n$ is the number of terms, and $r$is the ratio between any two consecutive terms.
Now, we compare the variables in the formula with our given geometric sequence.
$\sum\limits_{j = 1}^n {a{r^{j - 1}}} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}$
$ \Rightarrow \sum\limits_{j = 1}^n {a{r^{j - 1}} = \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} } $
Here, $a = 32;n = 6;r = \dfrac{1}{4}$
On substituting in, $\dfrac{{a(1 - {r^n})}}{{(1 - r)}}$we get,
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{32\left( {1 - {{\left( {\dfrac{1}{4}} \right)}^6}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
Now we first evaluate the power $6$ function.
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{32\left( {1 - \left( {\dfrac{1}{{{4^6}}}} \right)} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{32\left( {1 - \left( {\dfrac{1}{{4096}}} \right)} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
Now we evaluate the numerator part.
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{32\left( {\dfrac{{4096 - 1}}{{4096}}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
Progress to subtraction operation in the numerator and then multiply it with $32\;$
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{32\left( {\dfrac{{4095}}{{4096}}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
$4096\;$ when divided with $32\;$gives $128\;$.
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{\left( {\dfrac{{4095}}{{128}}} \right)}}{{1 - \left( {\dfrac{1}{4}} \right)}}$
Now, simplify the denominator.
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{\left( {\dfrac{{4095}}{{128}}} \right)}}{{\left( {\dfrac{3}{4}} \right)}}$
Evaluate the RHS and then simplify.
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{4095}}{{128}} \times \dfrac{4}{3}$
$128\;$when divided with $4$ we get $32\;$
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{4095}}{{32}} \times \dfrac{1}{3}$
$4095\;$ when divided with $3$ we get $1365\;$
So, on further simplifying we get,
$ \Rightarrow \sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} = \dfrac{{1365}}{{32}}$
$\therefore $The sum of the finite geometric sequence $\sum\limits_{j = 1}^6 {32{{\left( {\dfrac{1}{4}} \right)}^{j - 1}}} $ is $\dfrac{{1365}}{{32}}$.
Note: Whenever we are asked to give the sum of some finite geometric progression, always write the sequence in this format $\sum\limits_{j = 1}^n {a{r^{j - 1}}} $ to easily put the constants into the formula directly. If this step is skipped , we will have to find the first term separately, write the sequence up to $3$ terms to find the ratio of the geometric progression. So, avoid this long method as it may result in mistakes.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

