
Find the sum of the expression $\dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+...........n$ terms
Answer
589.5k+ views
Hint:Multiply and divide the whole expression by $\sin \theta $ .And split $\sin \theta $ as $\sin \left( 2\theta -\theta \right)$ for first term, $\sin \left( 3\theta -2\theta \right)$ for second term, $\sin \left( 4\theta -3\theta \right)$ for third term and similarly so on. Use the trigonometry identity given as
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$.
Complete step-by-step answer:
Given series in the equation is
$\dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+...........n$
Let sum of the given series be ‘s’, we get
$s=\dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+...........\text{ }.......\left( i \right)$
Multiply and divide by $\sin \theta $ in the right-hand side of the above equation
So, we get value of s as
$s=\dfrac{\sin \theta }{\sin \theta }\left[ \dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+........... \right]$
\[s=\dfrac{1}{\sin \theta }\left[ \dfrac{\sin \theta }{\sin \theta \sin 2\theta }+\dfrac{\sin \theta }{\sin 2\theta \sin 3\theta }+\dfrac{\sin \theta }{\sin 3\theta \sin 4\theta }+........... \right]\text{ }......\left( ii \right)\]
Now, we can write the last term of the given series as
$\dfrac{\sin \theta }{\sin \left( n-1 \right)\theta \sin n\theta }........\left( iii \right)$
Because, the difference in denominator terms in the product is $\theta $ .So, we can write the general term or last term as expression given in the problem
So, we get equation (ii) as
$s=\dfrac{1}{\sin \theta }\left[ \dfrac{\sin \theta }{\sin \theta \sin 2\theta }+\dfrac{\sin \theta }{\sin 2\theta \sin 3\theta }+\dfrac{\sin \theta }{\sin 3\theta \sin 4\theta }+.........\dfrac{\sin \theta }{\sin \left( n-1 \right)\theta \sin n\theta } \right]......\left( v \right)$
Now, replace $\sin \theta $ in numerator of all terms in the bracket as
$\begin{align}
& \sin \theta =\sin \left( 2\theta -\theta \right)\text{ }{{\text{1}}^{st}}\text{ term} \\
& \sin \theta =\sin \left( 3\theta -2\theta \right)\text{ }{{\text{2}}^{nd}}\text{ term} \\
& \sin \theta =\sin \left( 4\theta -3\theta \right)\text{ }{{\text{3}}^{rd}}\text{ term} \\
\end{align}$
Similarly, we can write $\sin \theta $ for nth term as
$\sin \theta =\sin \left( n\theta -\left( n-1 \right)\theta \right)\text{ }{{\text{n}}^{th}}\text{ term}$
Hence, we can write equation (iv) with the help of above equations as
$s=\dfrac{1}{\sin \theta }\left[ \dfrac{\sin \left( 2\theta -\theta \right)}{\sin \theta \sin 2\theta }+\dfrac{\sin \left( 3\theta -2\theta \right)}{\sin 2\theta \sin 3\theta }+\dfrac{\sin \left( 4\theta -3\theta \right)}{\sin 3\theta \sin 4\theta }+.........\dfrac{\sin \left( \left( n\theta \right)-\left( n-1 \right)\theta \right)}{\sin \left( n-1 \right)\theta \sin n\theta } \right]$
Now use the trigonometric identity given as
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
Hence, we can write series S using the above identity as
\[s=\dfrac{1}{\sin \theta }\left[ \begin{align}
& \dfrac{\sin 2\theta cos\theta -cos2\theta sin\theta }{\sin \theta \sin 2\theta }+\dfrac{\sin 3\theta cos2\theta -cos3\theta sin2\theta }{\sin 2\theta \sin 3\theta } \\
& \text{ }+\dfrac{\sin 4\theta cos3\theta -cos4\theta sin3\theta }{\sin 3\theta \sin 4\theta }+......\dfrac{\sin \left( n\theta \right)\cos \left( n-1 \right)\theta -\sin \left( n-1 \right)\theta \cos n\theta }{\sin \left( n-1 \right)\theta \sin n\theta } \\
\end{align} \right]\]
\[s=\dfrac{1}{\sin \theta }\left[ \begin{align}
& \dfrac{\sin 2\theta cos\theta }{\sin \theta \sin 2\theta }-\dfrac{cos2\theta sin\theta }{\sin \theta \sin 2\theta }+\dfrac{\sin 3\theta cos2\theta }{\sin 2\theta \sin 3\theta }-\dfrac{cos3\theta sin2\theta }{\sin 2\theta \sin 3\theta } \\
& \text{ }+\dfrac{\sin 4\theta cos3\theta }{\sin 3\theta \sin 4\theta }-\dfrac{cos4\theta sin3\theta }{\sin 3\theta \sin 4\theta }+......\dfrac{\sin \left( n\theta \right)\cos \left( n-1 \right)\theta }{\sin \left( n-1 \right)\theta \sin n\theta }-\dfrac{\sin \left( n-1 \right)\theta \cos n\theta }{\sin \left( n-1 \right)\theta \sin n\theta } \\
\end{align} \right]\]
$s=\dfrac{1}{\sin \theta }\left[ \begin{align}
& \dfrac{cos\theta }{\sin \theta }-\dfrac{cos2\theta }{\sin 2\theta }+\dfrac{cos2\theta }{\sin 2\theta }-\dfrac{cos3\theta }{\sin 3\theta }+\dfrac{cos3\theta }{\sin 3\theta }-\dfrac{cos4\theta }{\sin 4\theta } \\
& \text{ }+.........\dfrac{\cos \left( n-1 \right)\theta }{\sin \left( n-1 \right)\theta }-\dfrac{\cos n\theta }{\sin n\theta } \\
\end{align} \right]$
We know $\dfrac{\cos x}{\sin x}=\cot x$
So, we get value of ‘s’ as
$s=\dfrac{1}{\sin \theta }\left[ \cot \theta -\cot 2\theta +\cot 2\theta -\cot 3\theta +\cot 3\theta -\cot 4\theta +.........\cot \left( n-1 \right)\theta -\operatorname{cotn}\theta \right]$
The above series can also be written as
\[s=\dfrac{1}{\sin \theta }\left[ \begin{align}
& \cot \theta -\cot 2\theta + \\
& \cot 2\theta -\cot 3\theta + \\
& \cot 3\theta -\cot 4\theta + \\
& .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\
& .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\
& .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\
& .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\
& \cot \left( n-1 \right)\theta -\cot n\theta \\
\end{align} \right]\]
So, we get value of ‘s’ as
$\begin{align}
& s=\dfrac{1}{\sin \theta }\left[ \cot \theta -\cot n\theta \right] \\
& s=\dfrac{1}{\sin \theta }\left[ \dfrac{\cos \theta }{\sin \theta }-\dfrac{\cos n\theta }{\sin n\theta } \right] \\
& s=\dfrac{1}{\sin \theta }\left[ \dfrac{\cos \theta \sin n\theta -\cos n\theta \sin \theta }{\sin \theta \sin n\theta } \right] \\
& s=\dfrac{1}{\sin \theta }\dfrac{\sin \left( n\theta -\theta \right)}{\sin \theta \sin n\theta } \\
& s=\dfrac{\sin \left( n-1 \right)\theta }{{{\sin }^{2}}\theta \sin n\theta } \\
\end{align}$
Hence, sum of given series is
$s=\dfrac{\cot \theta -\cot n\theta }{\sin \theta }=\dfrac{\sin \left( n-1 \right)\theta }{{{\sin }^{2}}\theta \sin n\theta }$
Note: If general term of any series is
${{T}_{n}}=\sum{\dfrac{1}{\cos \left( n-1 \right)\theta \sin n\theta }}$
Then divide and multiply the whole equation by $\cos \theta =\cos \left( n\theta -\left( n-1 \right)\theta \right)$
And if ${{T}_{n}}$ is of type
\[{{T}_{n}}=\sum{\dfrac{1}{\cos \left( n-1 \right)\theta \cos n\theta }\text{ (or) }}\sum{\dfrac{1}{\cos \left( n-1 \right)\theta \sin n\theta }\text{ }}\]
Then divide and multiply the whole equation by \[\sin \left( n\theta -\left( n-1 \right)\theta \right)\]
Calculation is the important side of this question as well. And creating a difference type with the help of observation is the key point of the solution.
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$.
Complete step-by-step answer:
Given series in the equation is
$\dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+...........n$
Let sum of the given series be ‘s’, we get
$s=\dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+...........\text{ }.......\left( i \right)$
Multiply and divide by $\sin \theta $ in the right-hand side of the above equation
So, we get value of s as
$s=\dfrac{\sin \theta }{\sin \theta }\left[ \dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+........... \right]$
\[s=\dfrac{1}{\sin \theta }\left[ \dfrac{\sin \theta }{\sin \theta \sin 2\theta }+\dfrac{\sin \theta }{\sin 2\theta \sin 3\theta }+\dfrac{\sin \theta }{\sin 3\theta \sin 4\theta }+........... \right]\text{ }......\left( ii \right)\]
Now, we can write the last term of the given series as
$\dfrac{\sin \theta }{\sin \left( n-1 \right)\theta \sin n\theta }........\left( iii \right)$
Because, the difference in denominator terms in the product is $\theta $ .So, we can write the general term or last term as expression given in the problem
So, we get equation (ii) as
$s=\dfrac{1}{\sin \theta }\left[ \dfrac{\sin \theta }{\sin \theta \sin 2\theta }+\dfrac{\sin \theta }{\sin 2\theta \sin 3\theta }+\dfrac{\sin \theta }{\sin 3\theta \sin 4\theta }+.........\dfrac{\sin \theta }{\sin \left( n-1 \right)\theta \sin n\theta } \right]......\left( v \right)$
Now, replace $\sin \theta $ in numerator of all terms in the bracket as
$\begin{align}
& \sin \theta =\sin \left( 2\theta -\theta \right)\text{ }{{\text{1}}^{st}}\text{ term} \\
& \sin \theta =\sin \left( 3\theta -2\theta \right)\text{ }{{\text{2}}^{nd}}\text{ term} \\
& \sin \theta =\sin \left( 4\theta -3\theta \right)\text{ }{{\text{3}}^{rd}}\text{ term} \\
\end{align}$
Similarly, we can write $\sin \theta $ for nth term as
$\sin \theta =\sin \left( n\theta -\left( n-1 \right)\theta \right)\text{ }{{\text{n}}^{th}}\text{ term}$
Hence, we can write equation (iv) with the help of above equations as
$s=\dfrac{1}{\sin \theta }\left[ \dfrac{\sin \left( 2\theta -\theta \right)}{\sin \theta \sin 2\theta }+\dfrac{\sin \left( 3\theta -2\theta \right)}{\sin 2\theta \sin 3\theta }+\dfrac{\sin \left( 4\theta -3\theta \right)}{\sin 3\theta \sin 4\theta }+.........\dfrac{\sin \left( \left( n\theta \right)-\left( n-1 \right)\theta \right)}{\sin \left( n-1 \right)\theta \sin n\theta } \right]$
Now use the trigonometric identity given as
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
Hence, we can write series S using the above identity as
\[s=\dfrac{1}{\sin \theta }\left[ \begin{align}
& \dfrac{\sin 2\theta cos\theta -cos2\theta sin\theta }{\sin \theta \sin 2\theta }+\dfrac{\sin 3\theta cos2\theta -cos3\theta sin2\theta }{\sin 2\theta \sin 3\theta } \\
& \text{ }+\dfrac{\sin 4\theta cos3\theta -cos4\theta sin3\theta }{\sin 3\theta \sin 4\theta }+......\dfrac{\sin \left( n\theta \right)\cos \left( n-1 \right)\theta -\sin \left( n-1 \right)\theta \cos n\theta }{\sin \left( n-1 \right)\theta \sin n\theta } \\
\end{align} \right]\]
\[s=\dfrac{1}{\sin \theta }\left[ \begin{align}
& \dfrac{\sin 2\theta cos\theta }{\sin \theta \sin 2\theta }-\dfrac{cos2\theta sin\theta }{\sin \theta \sin 2\theta }+\dfrac{\sin 3\theta cos2\theta }{\sin 2\theta \sin 3\theta }-\dfrac{cos3\theta sin2\theta }{\sin 2\theta \sin 3\theta } \\
& \text{ }+\dfrac{\sin 4\theta cos3\theta }{\sin 3\theta \sin 4\theta }-\dfrac{cos4\theta sin3\theta }{\sin 3\theta \sin 4\theta }+......\dfrac{\sin \left( n\theta \right)\cos \left( n-1 \right)\theta }{\sin \left( n-1 \right)\theta \sin n\theta }-\dfrac{\sin \left( n-1 \right)\theta \cos n\theta }{\sin \left( n-1 \right)\theta \sin n\theta } \\
\end{align} \right]\]
$s=\dfrac{1}{\sin \theta }\left[ \begin{align}
& \dfrac{cos\theta }{\sin \theta }-\dfrac{cos2\theta }{\sin 2\theta }+\dfrac{cos2\theta }{\sin 2\theta }-\dfrac{cos3\theta }{\sin 3\theta }+\dfrac{cos3\theta }{\sin 3\theta }-\dfrac{cos4\theta }{\sin 4\theta } \\
& \text{ }+.........\dfrac{\cos \left( n-1 \right)\theta }{\sin \left( n-1 \right)\theta }-\dfrac{\cos n\theta }{\sin n\theta } \\
\end{align} \right]$
We know $\dfrac{\cos x}{\sin x}=\cot x$
So, we get value of ‘s’ as
$s=\dfrac{1}{\sin \theta }\left[ \cot \theta -\cot 2\theta +\cot 2\theta -\cot 3\theta +\cot 3\theta -\cot 4\theta +.........\cot \left( n-1 \right)\theta -\operatorname{cotn}\theta \right]$
The above series can also be written as
\[s=\dfrac{1}{\sin \theta }\left[ \begin{align}
& \cot \theta -\cot 2\theta + \\
& \cot 2\theta -\cot 3\theta + \\
& \cot 3\theta -\cot 4\theta + \\
& .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\
& .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\
& .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\
& .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\
& \cot \left( n-1 \right)\theta -\cot n\theta \\
\end{align} \right]\]
So, we get value of ‘s’ as
$\begin{align}
& s=\dfrac{1}{\sin \theta }\left[ \cot \theta -\cot n\theta \right] \\
& s=\dfrac{1}{\sin \theta }\left[ \dfrac{\cos \theta }{\sin \theta }-\dfrac{\cos n\theta }{\sin n\theta } \right] \\
& s=\dfrac{1}{\sin \theta }\left[ \dfrac{\cos \theta \sin n\theta -\cos n\theta \sin \theta }{\sin \theta \sin n\theta } \right] \\
& s=\dfrac{1}{\sin \theta }\dfrac{\sin \left( n\theta -\theta \right)}{\sin \theta \sin n\theta } \\
& s=\dfrac{\sin \left( n-1 \right)\theta }{{{\sin }^{2}}\theta \sin n\theta } \\
\end{align}$
Hence, sum of given series is
$s=\dfrac{\cot \theta -\cot n\theta }{\sin \theta }=\dfrac{\sin \left( n-1 \right)\theta }{{{\sin }^{2}}\theta \sin n\theta }$
Note: If general term of any series is
${{T}_{n}}=\sum{\dfrac{1}{\cos \left( n-1 \right)\theta \sin n\theta }}$
Then divide and multiply the whole equation by $\cos \theta =\cos \left( n\theta -\left( n-1 \right)\theta \right)$
And if ${{T}_{n}}$ is of type
\[{{T}_{n}}=\sum{\dfrac{1}{\cos \left( n-1 \right)\theta \cos n\theta }\text{ (or) }}\sum{\dfrac{1}{\cos \left( n-1 \right)\theta \sin n\theta }\text{ }}\]
Then divide and multiply the whole equation by \[\sin \left( n\theta -\left( n-1 \right)\theta \right)\]
Calculation is the important side of this question as well. And creating a difference type with the help of observation is the key point of the solution.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

